论文部分内容阅读
[摘 要]学生的数学理性能力是在数学学习过程中自然孕育和生成的。毫无疑问,数学课应该充分体现、表达数学的特点,并让学生在数学的光芒照耀下,形成与之适应的学习风格、思维特点。通过具体的教学案例分析,为创建更具理性色彩的数学课堂提供一些思考。
[关键词]理性色彩 数学 认识分数
[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)08-005
“分数的初步认识”是一节经典课,曾在各种层次的教研活动中大放异彩,被吴正宪、黄爱华、朱乐平、张齐华、周卫东、许卫兵等多位名师演绎过,他们有的注重情境,有的着力探索,有的凸显文化,有的关注基础,有的扣住理解,有的强化应用,可谓是亮点纷呈,各具特色。不过,数学是自然科学的基础学科,理性精神是其核心精神。数学思维的训练、数学方法的感悟、数学活动经验的积累,都离不开数学理性的参与。透过名师的课堂,可以感受到充满理性色彩的课堂魅力。本文以许卫兵老师“分数的初步认识”一课为例,谈谈个人的感想。
一、高点定位,整体“布局”,首尾呼应
从什么样的角度来引入分数,是分数的初步认识的首要命题。回顾以往的教学,通常有两种方式:一种以朱乐平老师为例,从“1÷2”中分数与除法的关系入手;一种以吴正宪老师和张齐华老师为例,从将多个物体平均分两份过渡到将一个物体平均分两份,让学生凭着日常生活经验体会“平均分”与“一半”的丰富含义,为接下来学习分数打开思路。这两种方式其实有相通之处,算式“1÷2”同样可以理解为一个物体平均分成两份,本质是一样的。许卫兵老师的站位似乎上了一个台阶,从“数系”的角度出发,引领学生在整数之外,寻找分数的踪迹,并最终实现二者的统一。
课始,师生从“数”的读音聊起,引出数学家华罗庚的话“数(shù)起源于数(shǔ)”,然后数苹果的个数,得出1、2、4等数,并告知在数学上这样的数叫“整数”。
课尾,让学生看图写分数(如图1)。随着一个图形被平均分的份数增加后,学生开始出现了“点数(shǔ)”的情况。
师(一边做点数的动作,一边追问学生):你们这是在干什么呢?
生:我们在数呢!
师:数什么呢?
生:数平均分成了几份,还数涂色的部分。
师:华罗庚爷爷说“数起源于数”,看来,不仅整数和数(shǔ)有关系,分数和数(shǔ)也——
生:有关系。
生:整数是数个数,分数是数份数。
【赏析】分数的学习建立在整数的基础上,从形式上来看,二者差别较大,但是,从内在关联性来看,又具有统一性,即整数由若干个“1”累积而来,分数由单个的“1”均分得到。学生从幼儿园学数数开始,大量接触了由许多“1”累加得到的整数,但是对于均分“1”得到的分数,却是第一次接触。他们需要把原有的“集中思维”发散开来,逆向完成新的建构。在这里,数学的理性表现为知识之间的承接性、多样性中的统一性。
二、交流写法,回顾意义,深化理解
分数的写法,在很多教师的课堂上是直接告知的。事实上,因为分数包含分子、分母、分数线三个部分,学生在模仿书写时的确出现了从上到下、从下往上、先中间后上下、先上下后中间等不同写法。这里面有什么可以“玩味”的呢?许卫兵老师非常敏锐地抓住了这个点。
师:1/2这个分数你会写吗?请一个同学到黑板上写一写。(一名学生上前书写,先写分子1,再写分数线,然后写分母2)
师:这位同学是从上往下写的。有书写顺序不同的吗?
生1:我是先写2,再写分数线,然后写1。
师:你是从下往上书写的。还有不同吗?
生2:我是先写分数线,然后写2,最后写1。
师:简单讲,就是从中间向两边。真是不说不知道,这一说还真奇妙。分数的书写到底有没有一个大家公认的数学顺序呢?(学生你看看我,我看看你,感到十分纳闷)
师:要是找不到合适的理由,那是否能举个例子,看看1/2是怎么产生的。比如,一个苹果(教师在黑板上画一只苹果),哪里是它的1/2?
生3:从中间把它切开。
师(在苹果上画一条线):从中间切开,就是切成两部分——同样大,我们学过,这种分法叫做——
生:平均分。
师:也就是把这个苹果平均分成2份(板书:平均分
[关键词]理性色彩 数学 认识分数
[中图分类号] G623.5 [文献标识码] A [文章编号] 1007-9068(2015)08-005
“分数的初步认识”是一节经典课,曾在各种层次的教研活动中大放异彩,被吴正宪、黄爱华、朱乐平、张齐华、周卫东、许卫兵等多位名师演绎过,他们有的注重情境,有的着力探索,有的凸显文化,有的关注基础,有的扣住理解,有的强化应用,可谓是亮点纷呈,各具特色。不过,数学是自然科学的基础学科,理性精神是其核心精神。数学思维的训练、数学方法的感悟、数学活动经验的积累,都离不开数学理性的参与。透过名师的课堂,可以感受到充满理性色彩的课堂魅力。本文以许卫兵老师“分数的初步认识”一课为例,谈谈个人的感想。
一、高点定位,整体“布局”,首尾呼应
从什么样的角度来引入分数,是分数的初步认识的首要命题。回顾以往的教学,通常有两种方式:一种以朱乐平老师为例,从“1÷2”中分数与除法的关系入手;一种以吴正宪老师和张齐华老师为例,从将多个物体平均分两份过渡到将一个物体平均分两份,让学生凭着日常生活经验体会“平均分”与“一半”的丰富含义,为接下来学习分数打开思路。这两种方式其实有相通之处,算式“1÷2”同样可以理解为一个物体平均分成两份,本质是一样的。许卫兵老师的站位似乎上了一个台阶,从“数系”的角度出发,引领学生在整数之外,寻找分数的踪迹,并最终实现二者的统一。
课始,师生从“数”的读音聊起,引出数学家华罗庚的话“数(shù)起源于数(shǔ)”,然后数苹果的个数,得出1、2、4等数,并告知在数学上这样的数叫“整数”。
课尾,让学生看图写分数(如图1)。随着一个图形被平均分的份数增加后,学生开始出现了“点数(shǔ)”的情况。
师(一边做点数的动作,一边追问学生):你们这是在干什么呢?
生:我们在数呢!
师:数什么呢?
生:数平均分成了几份,还数涂色的部分。
师:华罗庚爷爷说“数起源于数”,看来,不仅整数和数(shǔ)有关系,分数和数(shǔ)也——
生:有关系。
生:整数是数个数,分数是数份数。
【赏析】分数的学习建立在整数的基础上,从形式上来看,二者差别较大,但是,从内在关联性来看,又具有统一性,即整数由若干个“1”累积而来,分数由单个的“1”均分得到。学生从幼儿园学数数开始,大量接触了由许多“1”累加得到的整数,但是对于均分“1”得到的分数,却是第一次接触。他们需要把原有的“集中思维”发散开来,逆向完成新的建构。在这里,数学的理性表现为知识之间的承接性、多样性中的统一性。
二、交流写法,回顾意义,深化理解
分数的写法,在很多教师的课堂上是直接告知的。事实上,因为分数包含分子、分母、分数线三个部分,学生在模仿书写时的确出现了从上到下、从下往上、先中间后上下、先上下后中间等不同写法。这里面有什么可以“玩味”的呢?许卫兵老师非常敏锐地抓住了这个点。
师:1/2这个分数你会写吗?请一个同学到黑板上写一写。(一名学生上前书写,先写分子1,再写分数线,然后写分母2)
师:这位同学是从上往下写的。有书写顺序不同的吗?
生1:我是先写2,再写分数线,然后写1。
师:你是从下往上书写的。还有不同吗?
生2:我是先写分数线,然后写2,最后写1。
师:简单讲,就是从中间向两边。真是不说不知道,这一说还真奇妙。分数的书写到底有没有一个大家公认的数学顺序呢?(学生你看看我,我看看你,感到十分纳闷)
师:要是找不到合适的理由,那是否能举个例子,看看1/2是怎么产生的。比如,一个苹果(教师在黑板上画一只苹果),哪里是它的1/2?
生3:从中间把它切开。
师(在苹果上画一条线):从中间切开,就是切成两部分——同样大,我们学过,这种分法叫做——
生:平均分。
师:也就是把这个苹果平均分成2份(板书:平均分