论文部分内容阅读
首先对含跳系数的H~1型和H(curl)型椭圆问题的线性有限元方程,分别设计了基于AMG预条件子和基于节点辅助空间预条件子(HX预条件子)的PCG法.数值实验表明,算法的迭代次数基本不依赖于系数跳幅和离散网格"尺寸".然后以此为基础,对Maxwell方程组鞍点问题的第一类Nedelec线性棱元离散系统设计并分析了一种基于HX预条件子的Uzawa算法.当系数光滑时,理论上证明了算法的收敛率与网格规模无关.数值实验表明,新算法对跳系数情形也是高效和稳定的.