论文部分内容阅读
A solution is imperatively expected to meet the efficient contention resolution schemes for managing simultaneous access requests to the communication resources on the Network on Chip (NoC). Based on the ideas of conflict-free transmission, priority-based service, and dynamic self-adaptation to loading, this paper presents a novel scheduling algorithm for Medium Access Control (MAC) in NoC with the researches of the communication structure features of 2D mesh. The algorithm gives priority to guarantee the Quality of Service (QoS) for local input port as well as dynamic adjustment of the performance of the other ports along with input load change. The theoretical model of this algorithm is established with Markov chain and probability generating function. Mathematical analysis is made on the mean queue length and the mean inquiry cyclic time of the system. Simulated experiments are conducted to test the accuracy of the model. It turns out that the findings from theoretical analysis correspond well with those from simulated experiments. Further more, the analytical findings of the system performance demonstrate that the algorithm enables effectively strengthen the fairness and stability of data transmissions in NoC.
A solution is imperatively expected to meet the efficient contention resolution schemes for managing simultaneous access requests to the communication resources on the Network on Chip (NoC). Based on the ideas of conflict-free transmission, priority-based service, and dynamic self-adaptation The paper presents a novel scheduling algorithm for Medium Access Control (MAC) in NoC with the researches of the communication structure features of 2D mesh. The algorithm gives priority to guarantee the Quality of Service (QoS) for local input port as well as dynamic adjustment of the performance of the other ports along with input load change. The theoretical model of this algorithm is established with Markov chain and probability generating function. Mathematical analysis is made on the mean queue length and the mean inquiry cyclic time of the system . Simulated experiments are conducted to test the accuracy of the model. It turns out that the findings from theoretical analysis corr more than the analysis findings of the system performance demonstrate that the algorithm can effectively strengthen the fairness and stability of data transmissions in NoC.