论文部分内容阅读
Primary cultures of rat cortical neurons were treated with H2O2 in an in vitro model of free radical neurotoxicity. Flavonoids extracted from the stems and leaves of Scutellaria baicalensis Georgi, known as SSF, at concentrations of 18.98, 37.36 and 75.92 μg/mL, protected neurons against H2O2 injury in a dose-dependent manner. SSF increased cell survival, reduced lactate dehydrogenase release and inhibited malondialdehyde production. SSF also inhibited reductions in superoxide dismutase, glutathione peroxidase and Na+-K+-ATPase activities. These results in-dicate that SSF can protect rat cortical neurons against H2O2-induced oxidative injury.
Primary cultures of rat cortical neurons were treated with H2O2 in an in vitro model of free radical neurotoxicity. Flavonoids extracted from the stems and leaves of Scutellaria baicalensis Georgi, known as SSF, at concentrations of 18.98, 37.36 and 75.92 μg / mL, protected neurons SSF increased cell survival, reduced lactate dehydrogenase release and inhibited malondialdehyde production. SSF also inhibited reductions in superoxide dismutase, glutathione peroxidase and Na + -K + -ATPase activities. These results in-dicate that SSF can protect rat cortical neurons against H2O2-induced oxidative injury.