微积分的再思考

来源 :数学的实践与认识 | 被引量 : 0次 | 上传用户:ssssssfs
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
基于代数和显式一致估计的微积分思想可以追溯到前牛顿时代,或者欧拉和拉格朗日.由于所涉及的数学非常简单,新的方法可以从一些简单的例子出发,直接、自然却严格地建立微分和积分的流线型理论,并不需要连续性、极限和紧性的概念.
其他文献
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
利用Leggett-Williams不动点定理研究了一类具有单调递增同胚和正同态算子的边值问题,得到了三个正解存在的一组充分条件.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊
自然数m称为HΓ数,如果分圆多项式Fm(x)的系数只能是0或±1.本文研究自然数m成为HΓ数的条件,证明:如果p是素数,那么1)m=15p(p>5)为HΓ数的充分必要条件是p≡±1(mod 30);2)m=
运用正则锥上的非紧增算子的不动点的存在性,讨论了一般非线性Strum-Liouville奇异边值问题,得出了有关解的存在性确切个数的充分必要条件.改进了有关结果.
为探究吕家坨井田地质构造格局,根据钻孔勘探资料,采用分形理论和趋势面分析方法,研究了井田7
期刊