论文部分内容阅读
在多目标优化中,如何在最优解集中获得一组分布均匀且质量较好的代表解是十分重要的。文中给出了种群个体的序和解的均匀性分布定义,在此基础上又给出了解的序值方差和U-度量方差,然后把对任意多个目标函数的优化问题转化成对两个目标函数的优化问题,并对转化后的优化问题提出了一种新的多目标存档遗传算法,并证明了其全局收敛性。数据实验比较表明该算法能找到问题的数量更多、分布更广、更均匀的Pareto最优解。