改进Mask R-CNN模型的海洋锋检测

来源 :中国图象图形学报 | 被引量 : 0次 | 上传用户:baihe8302
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目的 海洋锋的高效检测对海洋生态环境变化、渔业资源评估、渔情预报及台风路径预测等具有重要意义.海洋锋具有边界信息不明显且多变的弱边缘性,传统基于梯度阈值法及边缘检测的海洋锋检测方法,存在阈值选择不固定、判定指标不一致导致检测精度较低的问题.针对上述问题,基于Mask R-CNN(region convolutional neural network)提出一种改进的海洋锋自动检测方法.方法 兼顾考虑海洋锋的小数据量及弱边缘性,首先对数据扩增,并基于不同算法对海表温度(sea surface temperatures,SST)遥感影像进行增强;其次,基于迁移学习的思想采用COCO(common objects in context)数据集对网络模型进行初始化;同时,对Mask R-CNN中残差神经网络(resid-ual neural network,ResNet)和特征金字塔模型(feature pyramid network,FPN)分别进行改进,在充分利用低层特征高分辨率和高层特征的高语义信息的基础上,对多个尺度的融合特征图分别进行目标预测,提升海洋锋的检测精度.结果 为验证本文方法的有效性,从训练数据和实验模型上分别设计多组对比实验.实验结果表明,相比常用的Mask R-CNN和YOLOv3(you only look once)神经网络,本文方法对SST梯度影像数据集上的海洋锋检测效果最好,海洋锋的定位准确率(intersection over union,IoU)及检测平均精度均值(mean average precision,mAP)达0.85以上.此外,通过对比分析实验结果发现,本文方法对强海洋锋的检测效果明显优于弱海洋锋.结论 本文根据专家经验设立合理的海洋锋检测标准,更好地考虑了海洋锋的弱边缘性.通过设计多组对比实验,验证了本文方法对海洋锋的高精度检测效果.
其他文献
目的 行人感知是自动驾驶中必不可少的一项内容,是行车安全的保障.传统激光雷达和单目视觉组合的行人感知模式,设备硬件成本高且多源数据匹配易导致误差产生.对此,本文结合双目机器视觉技术与深度学习图像识别技术,实现对公共路权环境下路侧行人的自动感知与精准定位.方法 利用双目道路智能感知系统采集道路前景图像构建4种交通环境下的行人识别模型训练库;采用RetinaNet深度学习模型进行目标行人自动识别;通过半全局块匹配(semi-global block matching,SGBM)算法实现行人道路前景图像对的视差