结合X-means聚类的自适应随机子空间组合分类算法

来源 :计算机应用 | 被引量 : 8次 | 上传用户:xdq2269586
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对大规模数据的分类准确率低且效率下降的问题,提出一种结合X-means聚类的自适应随机子空间组合分类算法。首先使用X-means聚类方法,保持原有数据结构的同时,把复杂的数据空间自动分解为多个样本子空间进行分治学习;而自适应随机子空间组合分类器,提升了基分类器的差异性并自动确定基分类器数量,提升了组合分类器的鲁棒性及分类准确性。该算法在人工和UCI数据集上进行了测试,并与传统单分类和组合分类算法进行了比较。实验结果表明,对于大规模数据集,该方法具有更好的分类精度和健壮性,并提升了整体算法的效率。
其他文献
针对短文本特征较少而导致使用传统文本分类算法进行分类效果并不理想的问题,提出了一种使用了概念描述的短文本分类算法,该方法首先构建出全局的语义概念词表;然后,使用概念词表分别对预测短文本和训练短文本概念化描述,使得预测短文本在训练集中找出拥有相似概念描述的训练短文本组合成预测长文本,同时将训练集内部的短文本也进行自组合形成训练长文本;最后,再使用传统的长文本分类算法进行分类。实验证明,该方法能够有效
目的应用小鼠胫骨牵引成骨模型,分析骨形态形成蛋白(Bone Morphogenetic protein, BMP)在牵引成骨过程中的表达,探讨机械牵张力怎样转化成为生物信号以调控骨再生过程. 方法
针对流形嵌入降维方法中在高维空间构建近邻图无益于后续工作,以及不容易给近邻大小和热核参数赋合适值的问题,提出一种稀疏判别分析算法(SEDA)。首先使用稀疏表示构建稀疏图保持数据的全局信息和几何结构,以克服流形嵌入方法的不足;其次,将稀疏保持作为正则化项使用Fisher判别准则,能够得到最优的投影。在一组高维数据集上的实验结果表明,SEDA是非常有效的半监督降维方法。
龙山县1970~2001年乙类传染病发病率、死亡率逐年大幅度下降,疾病构成亦发生明显变化.而在疟疾、麻疹、百日咳发病大幅度下降的同时,肺结核、乙肝、淋病发病呈上升趋势,是今后