基于KFCM-MultiSwarmPSO的SVR参数寻优策略

来源 :计算机与现代化 | 被引量 : 0次 | 上传用户:guoyinglonggyl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对目前支持向量回归机模型(SVR)参数寻优的各类基本方法,从提高计算效率及降低早熟收敛概率角度,从粒子群算法出发,提出一种新型的基于核模糊聚类(KFCM)算法参数自学习方法:多种群粒子群算法(Multi Swarm PSO)来对支持向量回归机的参数寻优策略进行改进。在改进策略中,融入k折交叉验证(k-CV)法并提出用幂函数作为粒子群算法动态学习因子的方法来提高算法性能。针对5个不同特点的数据集,用提出的改进粒子群算法与网格算法(Grid Algorithm)、标准粒子群算法(PSO)、标准遗传算法(GA
其他文献
在社交网络中查找和收集个人信息可以建立一个包含目标履历、生活、爱好以及朋友等属性的信息体系,但是不同社交网络中存在大量同名用户。为了解决同名歧义问题,采用计算用户
针对仓储物流机器人在拣选作业过程中难以进行高效实时的路径规划问题,提出一种有效的解决方法。首先,根据拣选作业的需要建立一个灵活的仓储空间模型并对拣选作业任务流程进
针对市场缺失一款家用或商用自动化仪器来进行各种液体的高效、高质量、个性化调配,设计并实现了一套以PIC18F单片机为核心的液体调配系统。系统通过前端与用户交互,获取用户