论文部分内容阅读
在过去的一年中,一种明显的动力促使美国航空与航天局(NASA)考虑以较低成本的使命来协调更高的新使命发射率。为了维持低使命成本,这些使命将只有较短的持续时间,并将使用较小的发射火箭(例如“飞马”火箭)。因此,将需要体积和质量都很小的仪器有效负载(即微型仪器)。此外,可以预料,在特殊使命中飞行的仪器数量也将受到严格限制;因此,提高仪器的性能将是理想的事情。在红外仪器中,焦平面一般需要致冷以保证探测器的高性能,尤其是对于光谱仪来说,高D*(探测率)是必不可少的。由于一台仪器的大部分质量和功率预算都被焦平面致冷器占据,只需普通致冷技术或者无需致冷的探测器技术可为实现微型红外仪器作出很多的贡献。InGaAs探测器具有高D*、暗电流以及不仅响应1-3μm短波红外波段、同时也响应可见光波段等特征。这最后一个特征使得人们可以扩大一给定光谱仪的通用性,其(?)法便是扩大焦平面的响应波段而同时又保持其简单性。本文讨论InGaAs探测器的技术及其在微型红外仪器中的应用潜力。
In the past year, a clear impetus has prompted NASA to consider a lower cost mission to coordinate higher new mission emissivities. In order to maintain low mission costs, these missions will have only short durations and will use smaller launch vehicles (such as the Pegasus rocket). Therefore, an instrument payload (ie, a micro-instrument) will be required that is small in volume and mass. In addition, it is anticipated that the number of instruments flying on special missions will also be severely limited; therefore, improving instrument performance will be ideal. In infrared instrumentation, the focal plane generally needs to be chilled to ensure high performance of the detector, especially for spectrometers where high D * (detection rate) is essential. Because most of the mass and power budgets of an instrument are taken up by focal plane chillers, only ordinary chilling or uncooled detector technology can make a great contribution to the realization of miniature infrared instruments. InGaAs detectors feature high D *, dark current, and respond not only to 1-3μm SWIR bands but also to visible light bands. This last feature allows one to expand the versatility of a given spectrometer by expanding the focal plane response band while maintaining its simplicity. This article discusses the technology of InGaAs detectors and their potential for use in miniature infrared instruments.