论文部分内容阅读
针对运动想象脑电信号(MI-EEG)分类准确率普遍偏较低的问题,引入基于深度框架的卷积神经网络模型(CNN)。首先,使用短时傅里叶变换(STFT)和连续小波变换(CWT)得到两种不同解析度下的时频信息;然后将其与电极通道位置信息相结合并以三维张量的形式作为CNN的输入;其次,设计了两种基于不同卷积策略的网络模型MixedCNN和StepByStepCNN来分别对两种形式的输入进行特征提取和分类识别;最后,针对因训练集样本过少而易发生的过拟合问题,引入mixup数据增强策略。在BCI Competit