论文部分内容阅读
针对遥感影像数据集庞大,地物复杂难辨等特性导致分类难度加大的问题,文中构建了一种基于混合核函数极限学习机的遥感图像分类方法。运用该方法对遥感图像数据集进行分类处理,并将其与单核极限学习机、无核极限学习机、支持向量机等方法进行了对比。实验结果表明,基于混合核函数的极限学习机在对遥感图像进行分类时,其总体精度更优,且一致性效果更好。