基于深度语义信息的查询扩展

来源 :计算机应用 | 被引量 : 2次 | 上传用户:ru438185839
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着互联网时代的到来,搜索引擎开始被普遍使用。在针对冷门数据时,由于用户的搜索词范围过小,搜索引擎无法检索出需要的数据,此时查询扩展系统可以有效辅助搜索引擎来提供可靠服务。基于全局文档分析的查询扩展方法,提出结合神经网络模型与包含语义信息的语料的语义相关模型,来更深层地提取词语间的语义信息。这些深层语义信息可以为查询扩展系统提供更加全面有效的特征支持,从而分析词语间的可扩展关系。在近义词林、语言知识库"HowNet"义原标注信息等语义数据中抽取局部可扩展词分布,利用神经网络模型的深度挖掘能力将语料空
其他文献
扶贫的关键是明确致贫原因,根据不同的致贫因素,提出相应的解决措施,达到精准脱贫。本文通过对X县贫困人口现状的梳理和分析,发现X县脱贫攻坚效果显著但是质量不高,脱贫人口
我院是一家隶属于贵州华烽电器有限公司的职工医院,同时也是贵阳市小河区长江社区卫生服务站,主要承担为本单位的职工、家属和本社区的居民提供基本医疗及预防、保健、康复、
为了更合理地挖掘研究团队,提出了一种基于师门关系的研究团队挖掘算法。首先,使用BiLSTM-CRF神经网络模型抽取学位论文致谢部分的师门和同门命名实体;其次,构建师生之间的指导合作关系网络;然后,改进鲁汶算法,提出基于师门关系的鲁汶算法来实现研究团队挖掘。在American College football等数据集上对比了标记传播算法、聚集系数算法与鲁汶算法的性能。此外,在三个不同规模的学位论文数