论文部分内容阅读
2015年高考的大幕已经落下,纵观今年的各地高考数学试题,解答题虽然灵活多变,但所考查数学知识、方法,基本数学思想是不变的,题目形式的设置是相对稳定的,突出特点是稳定,继续强化双基、考查能力,突出主干、考查全面.高考解答题所考查的内容依然是:三角(向量)、立体几何、解析几何、函数、不等式、数列及应用问题等高中数学中的热点内容,下面谈谈笔者的拙见.
一、命题特点
1.解答题的出处较稳定,一般为数列、三角函数(包括解三角形)、概率、立体几何(与向量整合)、函数与导数及不等式、解析几何等.
2.解法灵活多样,入口宽,得部分分易,得满分难,几乎每题都有坡度,层层设关卡,能较好地区分考生的能力层次.
3.侧重新增内容与传统的中学数学内容及数学应用的融合,如函数与导数、数列结合,向量与解析几何内容的结合等.
4.运算与推理互相渗透,推理证明与计算紧密结合,运算能力强弱对解题的成败有很大影响.在考查逻辑推理能力时,常常与运算能力结合考查,推导与证明问题的结论,往往要通过具体的运算;在计算题中,也较多地掺进了逻辑推理的成分,边推理边计算.
5.注重探究能力和创新能力的考查.探索性试题是考查这种能力的好素材,因此在试卷中占有重要的作用;同时加强了对应用性问题的考查.
二、基本题型
认真分析2015年各省市高考数学试题,虽略有差别,但总体上五至六个解答题的模式基本不变,分别为三角函数、平面向量型解答题、立体几何型解答题、排列组合、二项式定理及概率型解答题、函数与不等式型解答题、解析几何型解答题、数列型解答题.这是高考数学的重头戏,这部分内容包含的知识容量大、解题方法多、综合能力要求高,它们突出了中学数学的主要思想和方法,考查了同学们的创新能力和创新意识.
三、题型细说
1.三角函数,考查基本运算能力
三角仍是高考的热点,2015年大多新课程高考数学卷,将三角与解三角形结合,向量与立体几何、解析几何结合,以三角为载体考查基本运算能力,利用公式进行运算及变形,能够根据问题的条件寻找与设计合理、简捷的运算途径.
评注:本题考查二倍角公式、诱导公式、余弦定理、简单的三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查函数与方程、化归与转化等数学思想.
第(1)小题为课本必修4第142页练习1,体现了立足课本的要求.高考中常常将三角恒等变换与解三角形结合起来考,本题即是如此.本题的关键体现在以下两点,一是利用角的关系消角,体现了消元的思想;二是用余弦定理列方程组求三角函数值,体现了方程思想.
2.立体几何主要考查直线与平面的关系
立体几何的考查,主要有两类题型,一是在考查对空间几何体结构认识的前提下,综合性地考查对空间几何体的体积、表面积的计算,考查空间线面位置关系,角与距离的计算,这类试题以“图”引入,背景新颖,对同学们的空间想象能力有较高要求;二是在考查立体几何基本问题的前提下,将试题设计为“探索性”的类型,改变了给出明确结论让同学们证明的局面,这类试题由于结论不明确,对同学们的数学素养有较高要求.要想解决好如上所述的立体几何新型试题,除了牢固掌握好立体几何的基础知识和基本方法外,还要在空间想象能力、数学思想方法等方面下一番工夫,只有这样同学们才能面对新题型得心应手,将新题型转化为所熟悉的常规题,以便顺利解决问题.在解答方面,除推理证明,运用空间向量也是一种重要方法.这类题一定要注意解题规范,条件充分.
评注:本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立几何中的证明与求解,意在考查同学们的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种成熟的方法,要注意建立适当的空间直角坐标系以及运算的准确性.
3.解析几何突出“模块化”运算能力
解析几何解答试题热点的题型是求参数范围或求最值的综合性问题,探求动点的轨迹问题,有关定值、定点等的证明问题,与向量综合的探索性问题等.着重考查解析几何的基本思想,利用代数的方法研究几何问题的特点和性质.因此,在解题的过程中,计算占了很大的比例.
评注:本题主要考查椭圆的定义、标准方程及几何性质,直线与圆锥曲线的位置关系.由勾股定理求圆的弦长,体现数学数形结合的重要数学思想;用数字来刻画几何图形的特征,是解析几何的精髓,联立方程组,求出椭圆中参数的关系,进一步得到椭圆方程;构造函数求斜率取值范围,体现函数在解决实际问题中的重要作用,是拨高题.
4.以数列问题为载体考查抽象的演绎推理
数列解答试题是高考命题的一个必考且难度较大的题型,其命题热点是与不等式交汇、呈现递推关系的综合性试题.当中,以函数迭代、解几何曲线上的点列为命题载体,有着高等数学背景的数列解答题是未来高考命题的一个新的亮点,而命题的冷点是数列的应用性解答题.
评注:数列是特殊的函数,不等式是深刻认识函数与数列的重要工具,三者的综合是近几年高考命题的新热点,且数列的重心已经偏移到不等式的证明与求解中,而不再是以前的递推求通项.对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;另一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩.在后一种类型中,一定要注意放缩的尺度,二是要注意从哪一项开始放缩.
5.函数与导数结合,考查综合能力
函数问题更多的与导数相结合,应用导数研究函数的性质,应用函数的单调性证明不等式,是近几年全国各省高考数学的一个最大的特点.函数与不等式解答试题是高考命题的重要题型,它的解答需要用到导数的相关知识,其命题热点是伴随导数知识的考查,出现频率较高的题型是最值、范围命题.
评注:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.
6.应用问题的考查灵活多变
例6(2015年高考湖北,理20)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
(2)由(1)知,一天最大获利超过10000元的概率p1=P(Z>10000)=0.5 0.2=0.7,
由二项分布,3天中至少有1天最大获利超过10000元的概率为p=1-(1-p1)3=1-0.33=0.973.
评注:二项分布是高中概率中最重要的概率分布模型,是近年高考非常重要的一个考点.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.
一、命题特点
1.解答题的出处较稳定,一般为数列、三角函数(包括解三角形)、概率、立体几何(与向量整合)、函数与导数及不等式、解析几何等.
2.解法灵活多样,入口宽,得部分分易,得满分难,几乎每题都有坡度,层层设关卡,能较好地区分考生的能力层次.
3.侧重新增内容与传统的中学数学内容及数学应用的融合,如函数与导数、数列结合,向量与解析几何内容的结合等.
4.运算与推理互相渗透,推理证明与计算紧密结合,运算能力强弱对解题的成败有很大影响.在考查逻辑推理能力时,常常与运算能力结合考查,推导与证明问题的结论,往往要通过具体的运算;在计算题中,也较多地掺进了逻辑推理的成分,边推理边计算.
5.注重探究能力和创新能力的考查.探索性试题是考查这种能力的好素材,因此在试卷中占有重要的作用;同时加强了对应用性问题的考查.
二、基本题型
认真分析2015年各省市高考数学试题,虽略有差别,但总体上五至六个解答题的模式基本不变,分别为三角函数、平面向量型解答题、立体几何型解答题、排列组合、二项式定理及概率型解答题、函数与不等式型解答题、解析几何型解答题、数列型解答题.这是高考数学的重头戏,这部分内容包含的知识容量大、解题方法多、综合能力要求高,它们突出了中学数学的主要思想和方法,考查了同学们的创新能力和创新意识.
三、题型细说
1.三角函数,考查基本运算能力
三角仍是高考的热点,2015年大多新课程高考数学卷,将三角与解三角形结合,向量与立体几何、解析几何结合,以三角为载体考查基本运算能力,利用公式进行运算及变形,能够根据问题的条件寻找与设计合理、简捷的运算途径.
评注:本题考查二倍角公式、诱导公式、余弦定理、简单的三角恒等变换等基础知识,考查运算求解能力、推理论证能力,考查函数与方程、化归与转化等数学思想.
第(1)小题为课本必修4第142页练习1,体现了立足课本的要求.高考中常常将三角恒等变换与解三角形结合起来考,本题即是如此.本题的关键体现在以下两点,一是利用角的关系消角,体现了消元的思想;二是用余弦定理列方程组求三角函数值,体现了方程思想.
2.立体几何主要考查直线与平面的关系
立体几何的考查,主要有两类题型,一是在考查对空间几何体结构认识的前提下,综合性地考查对空间几何体的体积、表面积的计算,考查空间线面位置关系,角与距离的计算,这类试题以“图”引入,背景新颖,对同学们的空间想象能力有较高要求;二是在考查立体几何基本问题的前提下,将试题设计为“探索性”的类型,改变了给出明确结论让同学们证明的局面,这类试题由于结论不明确,对同学们的数学素养有较高要求.要想解决好如上所述的立体几何新型试题,除了牢固掌握好立体几何的基础知识和基本方法外,还要在空间想象能力、数学思想方法等方面下一番工夫,只有这样同学们才能面对新题型得心应手,将新题型转化为所熟悉的常规题,以便顺利解决问题.在解答方面,除推理证明,运用空间向量也是一种重要方法.这类题一定要注意解题规范,条件充分.
评注:本题涉及到了立体几何中的线面平行与垂直的判定与性质,全面考查立几何中的证明与求解,意在考查同学们的空间想象能力和逻辑推理能力;利用空间向量解决立体几何问题是一种成熟的方法,要注意建立适当的空间直角坐标系以及运算的准确性.
3.解析几何突出“模块化”运算能力
解析几何解答试题热点的题型是求参数范围或求最值的综合性问题,探求动点的轨迹问题,有关定值、定点等的证明问题,与向量综合的探索性问题等.着重考查解析几何的基本思想,利用代数的方法研究几何问题的特点和性质.因此,在解题的过程中,计算占了很大的比例.
评注:本题主要考查椭圆的定义、标准方程及几何性质,直线与圆锥曲线的位置关系.由勾股定理求圆的弦长,体现数学数形结合的重要数学思想;用数字来刻画几何图形的特征,是解析几何的精髓,联立方程组,求出椭圆中参数的关系,进一步得到椭圆方程;构造函数求斜率取值范围,体现函数在解决实际问题中的重要作用,是拨高题.
4.以数列问题为载体考查抽象的演绎推理
数列解答试题是高考命题的一个必考且难度较大的题型,其命题热点是与不等式交汇、呈现递推关系的综合性试题.当中,以函数迭代、解几何曲线上的点列为命题载体,有着高等数学背景的数列解答题是未来高考命题的一个新的亮点,而命题的冷点是数列的应用性解答题.
评注:数列是特殊的函数,不等式是深刻认识函数与数列的重要工具,三者的综合是近几年高考命题的新热点,且数列的重心已经偏移到不等式的证明与求解中,而不再是以前的递推求通项.对于数列问题中求和类(或求积类)不等式证明,如果是通过放缩的方法进行证明的,一般有两种类型:一种是能够直接求和(或求积),再放缩;另一种是不能直接求和(或求积),需要放缩后才能求和(或求积),求和(或求积)后再进行放缩.在后一种类型中,一定要注意放缩的尺度,二是要注意从哪一项开始放缩.
5.函数与导数结合,考查综合能力
函数问题更多的与导数相结合,应用导数研究函数的性质,应用函数的单调性证明不等式,是近几年全国各省高考数学的一个最大的特点.函数与不等式解答试题是高考命题的重要题型,它的解答需要用到导数的相关知识,其命题热点是伴随导数知识的考查,出现频率较高的题型是最值、范围命题.
评注:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.
6.应用问题的考查灵活多变
例6(2015年高考湖北,理20)某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(1)求Z的分布列和均值;
(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
(2)由(1)知,一天最大获利超过10000元的概率p1=P(Z>10000)=0.5 0.2=0.7,
由二项分布,3天中至少有1天最大获利超过10000元的概率为p=1-(1-p1)3=1-0.33=0.973.
评注:二项分布是高中概率中最重要的概率分布模型,是近年高考非常重要的一个考点.独立重复试验是相互独立事件的特例(概率公式也是如此),就像对立事件是互斥事件的特例一样,只要有“恰好”字样的用独立重复试验的概率公式计算更简单,就像有“至少”或“至多”字样的题用对立事件的概率公式计算更简单一样.