论文部分内容阅读
采用基于信号分析的无模型检测方案和信息融合技术,对支撑座早期松动故障进行检测诊断。针对支撑座松动的小波包变换特征和功率谱特征进行特征融合与决策融合,同时采用基于熵度量的无监督特征约简方法对功率谱特征进行约简,有效地减少了特征数目,加快了融合和诊断速度。特征融合与决策融合采用分层神经网络实现,该网络综合了局部融合和全局融合的优点,具有很高的故障确诊率和很好的抗噪性能,无噪声样本综合确诊率达94.3%,有噪声样本综合确诊率达88.6%。