论文部分内容阅读
Aim:The renin-angiotensin system plays a crucial role in the development and establishment of hypertension,and the pharmacological blockade of the system results in a reduction in blood pressure. In the present study,we investigated whether the effects of a novel,double-stranded,recombinant adeno-associated virus vector (rAAV)-mediated antisense angiotensin Ⅱ receptor l (AT1R) gene efficiently prevents the development of hypertension induced by a high-salt diet in adult,male Sprague-Dawley (SD) rats. Methods:A rAAV was prepared with a cassette containing a cytomegalovirus promoter and partial cDNA (660 base pairs) for the AT1R inserted in the antisense direction (rAAV-AT1AS). A single tail vein injection of the rAAV-AT1-AS or rAAV-GFP (green fluorescent protein,a reporter gene) was performed in adult,male SD rats. Two weeks after injection,the animals were fed a diet containing 8% NaCI,and the systolic blood pressure was measured weekly using the tail-cuff method for 12 weeks. Results:The high-salt diet induced a significant rise in systolic blood pressure in the rAAV-GFP-treated animals;however,the rAAV-AT:AS treatment attenuated the rise in blood pressure (142.7±4.5 mmHg vs 117±3.8 mmHg,P<0.01),and the hypotensive effect was maintained until the experiments ended at 12 weeks. In the rAAV-GFP-treated animals AT1 was overexpressed in various tissues,especially in the aorta and kidney at mRNA levels;in contrast,rAAV-AT:AS treatment markedly attenuated AT1 expression. Furthermore,rAAV-AT:AS treatment prevented target organ damages from hypertension,including cardiac dysfunction and renal injury compared to the rAAV-GFP group. Conclusion:These results suggest that rAAVmediated anti-AT1 delivery attenuates the development of hypertension and protects against renal injury and cardiac remodeling.