公道正派:组织工作永远的旗帜

来源 :组织人事学研究 | 被引量 : 0次 | 上传用户:kpdavid
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
公道正派,一个古老而现实的话题。说它古老,是因为它历朝历代都是社会广泛关注的问题,封建官堂也高悬“公正廉明”的牌匾;说它现实,是因为它在当今时代受到严峻挑战,发生在一些地方的一桩桩、一件件违反政策、规定的典型案件触目惊心。我国干部人事工作成绩有目共 Fair and honest, an ancient and realistic topic. To say that it is ancient because it has been a topic of widespread concern in the society for many generations and the feudal official hall has also placarded the plaque of “fair and honest”; to say that it is realistic because it has been harshly challenged in present-day times and occurs in some places One by one, in violation of the policy, the provisions of the typical cases shocking. The achievements of cadres and personnel in our country make a difference
其他文献
本文对特征为2的交换环上C型Chevalley代数的由正根基向量生成的幂零子代数的自同构进行了研究。设R是一个特征为2的含单位元1的交换环,N是R上C4型Chevalley代数的由于根基向
讨论有限群G的结构和性质时,我们常常借助于其子群的性质.众所周知,有限群的素数幂阶子群在有限群理论的研究中起着极其重要的作用.本文的主要目的,是研究Fitting子群、广义Fitt
本文首先在有重差商的基础上介绍了重结点B样条的概念,总结了重结点B样条定义的三种形式:Mi,n(x),Ni,n(x),Ωi,n(x).以往的文献没有给出一般情况下重结点B样条的显式表达式,本文将根
本文讨论高阶方程包括KdV方程,Sobolev方程和四阶抛物方程的特征线混合(间断)有限元方法,该方法主要特点是运用混合有限元方法将高阶方程降阶,结合不同的时间离散方案,对降阶后的
学位
随着经济的讯猛发展,交通运输的需求变得愈加迫切。而大城市中新建和扩建道路的可能性却越来越小,并且,仅仅依靠基础设施的建设,不可能满足交通需求,城市交通拥挤状况越来越严重。
可修系统的可靠性是可靠性研究当中一个非常重要的内容,本文在现有的可修系统可靠性研究成果的基础上,对系统及其修理设备均可维修的几种重要系统的可靠性进行了分析讨论: 1)
本文主要分为两部分。第一章在Suzuki[17]关于带Opial条件的Banach空间中的非扩张半群的不动点理论的基础上进行推广,得到了带Opial条件的Banach空间中渐近非扩张型半群的遍历
非线性分析是以现实世界中各种非线性问题为背景,它是处理各种非线性微分方程的理论基石,其方法主要包括半序方法、拓扑度理论、临界点理论等.本文利用拓扑度理论和临界点理论
学位