论文部分内容阅读
本文评论了作为微波和高速器件材料工艺的化学汽相沉积、分子束外延、离子注入以及液相外延的状况。对文献作了综合介绍,指出了最近15年来的研究趋势。评论了微波器件对材料的要求,并以 GaAs MESFET作为器件的例子,讨论了一些有代表性的材料问题及工艺要求。用肖特基二极管——FET 逻辑栅作为典型的器件进行探讨,并系统地阐明了有关GaAs 集成电路和高速器件对材料工艺的要求。概略地展望了材料的未来,诸如掺杂调制超晶格结构与三元化合物。本文断言,对目前分立的微波器件来说,化学汽相沉积是被优先选用的材料体系。如果半绝缘衬底的质量问题得到解决,离子注入就将是一种合适的工艺。对于高速器件来说,离子注入是极重要的材料工艺。分子束外延与金属有机化合物化学汽相沉积将更愈来愈多地用于更为复杂的结构。这样,Ⅲ-Ⅴ族化合物就和器件设计混为一体了。
This article reviews the status of chemical vapor deposition, molecular beam epitaxy, ion implantation, and liquid phase epitaxy as materials for microwave and high speed devices. The article made a comprehensive introduction, pointing out the research trend in the recent 15 years. Commenting on the material requirements of microwave devices, some typical material problems and process requirements are discussed with GaAs MESFETs as an example. Schottky diode - FET logic gate as a typical device to explore and systematically elucidate the GaAs integrated circuits and high-speed devices on the material process requirements. The future of materials is outlined, such as doping with modulated superlattice structures and ternary compounds. This paper asserts that for the currently discrete microwave devices, chemical vapor deposition is the preferred material system. If the quality of the semi-insulating substrate is resolved, ion implantation will be a suitable process. For high-speed devices, ion implantation is an extremely important material process. Molecular beam epitaxy and metal-organic compound chemical vapor deposition will be used more and more for more complex structures. In this way, the III-V compound is integrated with the device design.