Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without m

来源 :中国物理B(英文版) | 被引量 : 0次 | 上传用户:guoyinglonggyl
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Vanadium dioxide (VO2) is a strongly correlated material,and it has become known due to its sharp metal-insulator transition (MIT) near room temperature.Understanding the thermal properties and their change across MIT of VO2 thin film is important for the applications of this material in various devices.Here,the changes in thermal conductivity of epitaxial and polycrystalline VO2 thin film across MIT are probed by the time-domain thermoreflectance (TDTR) method.The measurements are performed in a direct way devoid of deposition of any metal thermoreflectance layer on the VO2 film to attenuate the impact from extra thermal interfaces.It is demonstrated that the method is feasible for the VO2 films with thickness values larger than 100 nm and beyond the phase transition region.The observed reasonable thermal conductivity change rates across MIT of VO2 thin films with different crystal qualities are found to be correlated with the electrical conductivity change rate,which is different from the reported behavior of single crystal VO2 nanowires.The recovery of the relationship between thermal conductivity and electrical conductivity in VO2 film may be attributed to the increasing elastic electron scattering weight,caused by the defects in the film.This work demonstrates the possibility and limitation of investigating the thermal properties of VO2 thin films by the TDTR method without depositing any metal thermoreflectance layer.
其他文献
Damage depth is an important dynamic parameter for describing the degree of material damage and is also a key fundamental issue in the field of impact compression technology.The present work is dedicated to the damage depth of shock-melted metal in micros
We report the strong dependence of resistance on uniaxial strain in monolayer WSe2 at various temperatures,where the gauge factor can reach as large as 2400.The observation of strain-dependent resistance and giant gauge factor is attributed to the emergen
The low-temperature magnetic order behaviors of perovskite oxide CaCu3Ti4O12 (CCTO) ceramics prepared by dif-ferent methods are discussed.X-ray diffraction,scanning electron microscope,x-ray photoelectron spectroscopy,and direct current (DC) magnetization
The operating frequencies of surface plasmons in pristine graphene lie in the terahertz and infrared spectral range,which limits their utilization.Here,the high-frequency plasmons in doped graphene nanostructures are studied by the time-dependent density
We investigate the spin-related currents and tunnel magnetoresistance through a quantum dot,which is side-coupled with a Majorana fermion zero mode and two thermal-driven ferromagnetic electrodes.It is found that the interplay of Majorana fermion and elec
To study the electron transport properties in InGaN channel-based heterostructures,a revised Fang-Howard wave function is proposed by combining the effect of GaN back barrier.Various scattering mechanisms,such as dislocation impurity (DIS) scattering,pola
Strontium titanate (SrTiO3) is a thermoelectric material with large Seebeck coefficient that has potential applications in high-temperature power generators.To simultaneously achieve a low thermal conductivity and high electrical conduc-tivity,polycrystal
We perform first-principles calculations and coherent laser-matter interaction analyses to investigate the laser-induced ultrafast spin flip on graphene nanoflakes (GNFs) with transition metal elements attached on the boundary[TM&GNFs(TM =Fe,Co,Ni)].It is
In order to explore the stability of a liquid crystal (LC) system doped with γ-Fe2O3 nanoparticles,the physical properties (clearing point,dielectric properties),electro-optical properties and residual direct-current voltage (RDCV) of the doped LC system
Cell migration in anisotropic microenvironment plays an important role in the development of normal tissues and organs as well as neoplasm progression,e.g.,osteogenic differentiation of embryonic stem cells was facilitated on stiffer substrates,indicating