论文部分内容阅读
在多高斯模型的基础上,从场景中模型分布不均匀性出发,提出了一种新的快速背景差算法。该算法针对混合高斯模型中固定模型数量不足的问题,建立了模型产生和退出的机制,使模型数量能够自动适应场景特点,实现了高斯模型的实时自适应分布,即提高了准确性又有效地减少了模型的总量;同时,针对混合高斯模型中计算量大的问题,对模型参数的计算进行了优化,将耗时的浮点运算转化为整型运算,减少了计算量;算法中引入了生存时间和模型重现频率的概念,通过对模型重现频率的限制有效抑制高频噪声。与混合高斯模型的实验结果对比说明,该快速算法