论文部分内容阅读
Intraventricular hemorrhage (IVH) is one of the most severe medical emergencies in neurosurgery. Early detection or diagnosis would significantly reduce the rate of disability and mortality, and improve the prognosis of the patients. Although present medical imaging techniques have high sensitivity to identify bleeding, the use of an additional, non-invasive imaging technique capable of continuously monitoring IVH is required to prevent contingent bleeding or re-bleeding. In this study, electrical impedance tomography (EIT) was applied to detect the onset of IVH modeled on 6 piglets in real time, with the subsequent process being monitored continuously. The experimental IVH model was introduced by one-time injection of 2 ml fresh autologous arterial blood into the ventricles of piglets. Results showed that resistivity variations within the brain caused by the added blood could be detected and imaged in vivo using the EIT method, and the magnitude and the size of region of interest on EIT images may be linearly associated with the volume of the blood. In conclusion, EIT has unique potential for use in clinical practice to provide invaluable real-time neuroimaging data for IVH after the improvement of electrode design, anisotropic realistic modeling, and instrumentation.