论文部分内容阅读
以有效塔板数作为二维色谱的柱效指标,根据二维色谱在不同影响因素(包括预柱柱温、主柱柱温、柱间压差和主柱间的放空量)下的有效塔板数实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)方法,建立了二维色谱柱效的SVR预测模型,并与BP神经网络(BPNN)模型进行了比较。结果表明:基于相同的训练样本和检验样本,二维色谱的SVR模型的平均绝对百分误差(MAPE,13.3%)比其BPNN模型的MAPE小4%;增加训练样本数有助于提高支持向量回归(SVR)模型的泛化性能;基于留-交叉验证法(LOOCV