论文部分内容阅读
通过载气吹送颗粒的方法,在堆焊过共晶Fe-Cr-C合金的同时,在该合金中浸润WC陶瓷强化相。通过场发射扫描电镜、X射线衍射仪和显微硬度计,对铁基增强WC颗粒堆焊层的显微组织、相变规律、WC颗粒在Fe-CrC合金的熔解相转变机制以及各相的微观硬度进行测试分析。结果表明,采用堆焊同时载气吹送WC颗粒浸润堆焊层的新工艺,可以制备出含WC增强相的过共晶Fe-Cr-C堆焊合金。WC增强相与Fe-Cr-C堆焊层结合性能良好,WC颗粒表面发生了熔解扩散,形成了Fe3W3C和Fe6W6C两种η碳化物。含WC增强颗粒的过共晶Fe-Cr-C堆焊合金中,未熔WC颗粒的显微硬度为1 480HV,高于过共晶组织中初生Cr7C3的硬度1 322HV。WC增强相有利于提高过共晶Fe-Cr-C堆焊合金的耐磨性。
The method of blowing particles through a carrier gas infiltrated the WC ceramic strengthening phase into the alloy while eutectic Fe-Cr-C alloy was deposited. The microstructure and phase transition law of WC-based WC hardfacing layer, the transformation mechanism of WC particles in the molten phase of Fe-CrC alloy, and the phase transformation of each phase were investigated by field emission scanning electron microscopy, X-ray diffraction and microhardness tester Micro hardness test analysis. The results show that the over-eutectic Fe-Cr-C surfacing alloy with WC reinforcing phase can be prepared by using the new technology of surfacing welding while the carrier gas blows WC surfacing layer. WC reinforcing phase and Fe-Cr-C surfacing layer bonding performance is good, the WC particles surface melting diffusion, the formation of Fe3W3C and Fe6W6C two η carbide. In the hypereutectic Fe-Cr-C surfacing alloy containing WC reinforcing particles, the microhardness of the unmelted WC particles is 1 480 HV, which is higher than the hardness of the primary Cr7C3 in the hypereutectic structure, which is 1 322 HV. WC reinforced phase is conducive to improve the wear resistance of hypereutectic Fe-Cr-C surfacing alloy.