论文部分内容阅读
对于含有参数的一元一次不等式(组),根据其解集确定参数的取值是学生学习一元一次不等式(组)的难点之一,也是中考的主要考点之一.笔者认为,突破这一难点的关键就在于正确理解一元一次不等式(组)的解集的意义以及有(无)解(包括特殊解)的条件.下面就如何根据题设条件确定一元一次不等式(组)里的参数的取值提出如下分析意见,与同学们共勉.一、根据不等式(组)的解集求参数的取值例1如果关于x的不等式ax-a>1-z的解集为x<1,那么a的取值范围是______。解析原不等式化为:(a+1)x>a+1,由不等式的
For a unitary inequality (group) containing parameters, determining the value of the parameter according to its solution set is one of the difficult points for students to learn the inequality (group) and is also one of the main test points in the test. The key is to correctly understand the meaning of unary inequality (set) solution set and the condition of (no) solution (including special solution) .How to determine the parameters of unary inequality (group) Put forward the following analysis opinions, and their fellow students. First, according to the inequality (group) solution sets the value of the parameter Example 1 If the solution to the inequality ax-a> 1-z for x x <1, then a The value range is ______. Analysis of the original inequality is: (a +1) x> a +1, from the inequality