Population exposure to precipitation extremes in the Indus River Basin at 1.5 °C, 2.0 °C and 3.0 °C

来源 :气候变化研究进展(英文版) | 被引量 : 0次 | 上传用户:xushihuinuaa
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Adverse effects of extreme events are the major focus of climate change impact studies. Precipitation-related extremes has substantial so-cioeconomic impacts under the changing climate. Quantifying population exposure to precipitation extreme is the fundamental aspect of population risk assessments in the climate hotspot of Indus River Basin. This study investigates the population exposure to precipitation ex-tremes at 1.5 °C, 2.0 °C, and 3.0 °C global warmings in the Indus River Basin using daily precipitation data, and projected population under shared socioeconomic pathways (SSPs). The Intensity-Area-Duration method was applied to detect the extreme precipitation event by tracing the rainstorm process, calculated based on five downscaled and bias-corrected Global Climate Model (GCM) outputs from Coupled Model Intercomparison Project Phase 5 (CMIP5) under four Representative Concentration Pathways (RCP2.6, RCP4.5, RCP6.0, and RCP8.5). The exposure of the population is finally estimated by combing SSP1 with 1.5 °C, SSP2 with 2.0 °C, and SSP5 with 3.0 °C warming levels. Results show that warming over the Indus River Basin is projected to be higher than that of the global average. Both the extreme precipitation events and population exposure are projected to increase with warming level. With regard to the reference period (1986-2005), the frequency, duration, and impacted area of extreme precipitation are projected to increase by 13.2%, 7.4%, and 1.6% annually under 1.5 °C in the Indus River Basin, respectively. Whereas, an additional 0.5 °C and 1.5 °C warming can lead to further increase in the frequency of 16.6%, 17.3%, as well as the duration of 8.6%, 12%, and areal coverage of 2.1%, 5.3%, respectively. The population exposure to extreme precipitation is projected to increase by 72.4%, 122.7%, and 87.6%, respectively, at SSP1 with 1.5 °C, SSP2 with 2.0 °C and SSP5 with 3.0 °C warming levels compare to the reference period. The demographic change is responsible more for the tremendous increment of population exposure in the Indus River Basin. If the population was held constant to the level of 2010, the increase of population exposure would be 4.4%, 8.8%, and 17.6%, respectively, at 1.5 °C, 2.0 °C, and 3.0 °C warming levels. Spatially, the prominent increment of population exposure is projected in the central and southwestern Indus River Basin. This study highlights that limiting the increase of temperature to 1.5 °C can substantially reduce population exposure to extreme precipitation events in the Indus River Basin, compared to an additional warming. Simultaneously, urge paid to formulate policies on population growth to reduce future exposure.
其他文献
The Convention on Biological Diversity and the United Nations Framework Convention on Climate Change are the two most important environmental conventions for bi
维生素是维持人体生命活动必需的一类有机物质,机体本身一般不能合成或合成量不足,因此需经食物或其他强化产品获取.目前,维生素产品已广泛应用于医药、食品添加剂、饲料添加
In the Lancang?Mekong River basin (LMRB), agriculture, dominating the local economy, faces increasing challenges in water supply under climate change. The proje
近30年来解脂耶氏酵母、克鲁维酵母、毕赤酵母、假丝酵母、汉逊酵母等非传统酵母因其具有天然的生理代谢优势,如快速生长、多底物利用、胁迫耐受性等,在代谢工程领域得到了广
作为一种食品安全级的典型工业模式微生物,枯草芽孢杆菌Bacillus subtilis由于具有非致病性、胞外分泌蛋白能力强以及无明显的密码子偏爱性等特点,现已被广泛应用于代谢工程
Ski tourism is extremely sensitive to climate change and is also heavily affected by socioeconomic conditions.Although some ski areas arestill profitable under current climate and socioeconomic conditions,they will become difficult to operate in the face
四碳有机酸作为重要的平台化学品,广泛应用于食品、化工、农业、医药和生物材料等领域.与传统的石化法相比,利用微生物发酵生产四碳有机酸具有反应条件温和、过程绿色环保等
代谢工程从20世纪90年代初期发展至今已有近30年历史,对微生物菌种改良和选育工作起到了极大的推动作用.芳香族化合物是一类可以通过微生物发酵生产的化学品,广泛应用于医药
以流域为尺度进行景观生态风险评价以及景观格局优化,有利于为流域生态系统服务的提高和人类活动管控提供科学依据。以涪江流域为研究区域,从"自然-社会-景观格局"3个维度选取10个评价因子建立评价指标体系,采取空间主成分分析法(SPCA)对流域景观生态风险进行综合评价,再基于生态风险评价的结果和生态源地利用最小累积阻力模型(MCR)和网络分析等方法实现流域景观格局优化。研究结果表明:(1)涪江流域景观生
氨基酸发酵是我国发酵工业的支柱产业,近年来,随着代谢工程的快速发展,氨基酸的代谢工程育种蓬勃发展.传统的正向代谢工程、基于组学分析与计算机模拟的反向代谢工程以及借鉴