论文部分内容阅读
自行组装了两套可控温型天然气扩散系数测定仪 ,可以测定高温、高压条件下岩石的天然气扩散系数 ,能较好地模拟地层条件 ,比以往国内外常温、常压或较高温度、压力的测量仪前进了一步。利用该仪器分别测定了天然气通过 1 0块干岩样和饱和水岩样的天然气扩散系数 ,并应用费克定律的积分式及气体范德华方程 ,将实测天然气扩散系数转换为饱和介质条件下的天然气扩散系数 ,转换系数为 6.0 9。利用斯托克斯 爱因斯坦方程对实测天然气扩散系数进行了温度校正 ,校正后地层条件下的天然气扩散系数均小于实测天然气扩散系数 ,且随着埋深增加 ,二者之间的差值逐渐减小 ,其原因是地温随着埋深增加而升高 ,天然气分子运动速度加快 ,表明这一校正结果是符合地层条件的。图 1表 2参 5
Self-assembled two sets of controllable natural gas diffusion coefficient detector can measure the high temperature and high pressure rock gas diffusion coefficient, can better simulate the formation conditions than at home and abroad at room temperature, pressure or higher temperature and pressure The meter goes a step further. The diffusion coefficient of natural gas passing through 10 dry and saturated water samples of natural gas was measured by this instrument. The integral gas diffusion and gas Van der Waals equations of Feke’s law were applied to convert the measured natural gas diffusion coefficient into natural gas under saturated medium Diffusion coefficient, conversion factor 6.09. The Stokes Einstein equation was used to calibrate the measured natural gas diffusion coefficient. The corrected natural gas diffusion coefficient was less than the measured natural gas diffusion coefficient under the corrected formation conditions. As the depth increased, the difference between the two gradually decreased The reason is that the ground temperature increases with the increase of burial depth and the molecular movement speed of natural gas accelerates, indicating that the result of this correction is in line with the formation conditions. Figure 1 Table 2 Reference 5