论文部分内容阅读
AIM:To investigate the impact of phosphatase and tensin homolog(Pten) in the specification of intestinal enteroendocrine subpopulations.METHODS:Using the Cre/loxP system,a mouse with conditional intestinal epithelial Pten deficiency was generated.Pten mutant mice and controls were sacrificed and small intestines collected for immunofluorescence and quantitative real-time polymerase chain reaction.Blood was collected on 16 h fasted mice by cardiac puncture.Enzyme-linked immunosorbent assay was used to measure blood circulating ghrelin,somatostatin(SST) and glucose-dependent insulinotropic peptide(GIP) levels.RESULTS:Results show an unexpected dual regulatory role for epithelial Pten signalling in the specification/differentiation of enteroendocrine cell subpopulations in the small intestine.Our data indicate that Pten positively regulates chromogranin A(CgA) expressing subpopulations,including cells expressing secretin,ghrelin,gastrin and cholecystokinin(CCK).In contrast,Pten negatively regulates the enteroendocrine subtype specification of non-expressing CgA cells such as GIP and SST expressing cells.CONCLUSION:The present results demonstrate that Pten signalling favours the enteroendocrine progenitor to specify into cells expressing CgA including those producing CCK,gastrin and ghrelin.
AIM: To investigate the impact of phosphatase and tensin homolog (Pten) in the specification of intestinal enteroendocrine subpopulations. METHODS: Using the Cre / loxP system, a mouse with conditional intestinal epithelial Pten deficiency was generated. Pten mutant mice and controls were sacrificed and small intestines collected for immunofluorescence and quantitative real-time polymerase chain reaction. Blood was collected on 16 h fasted mice by cardiac puncture. Enzyme-linked immunosorbent assay was used to measure blood circulating ghrelin, somatostatin (SST) and glucose-dependent insulinotropic peptide GIP) levels .RESULTS: Results show an unexpected dual regulatory role for epithelial Pten signaling in the specification / differentiation of enteroendocrine cell subpopulations in the small intestine. Our data indicate that Pten positively regulates chromogranin A (CgA) expressing subpopulations, including cells expressing secretin , ghrelin, gastrin and cholecystokinin (CCK). In contrast, Pten negatively regulates the enteroendocrine subtype specification of non-expressing CgA cells such as GIP and SST expressing cells. CONCLUSION: The present results demonstrate that Pten signaling favors the enteroendocrine progenitor to specify into cells expressing CgA including those producing CCK, gastrin and ghrelin.