论文部分内容阅读
针对无人驾驶领域的车道线检测鲁棒性差的问题,提出一种基于特征模型融合的实时车道线检测算法。在图像预处理阶段引入白平衡、灰度化操作及形态学处理,将RGB颜色空间转换成HSL颜色空间,接着采用梯度阈值检测出黄色和白色车道线进行线性融合以增强车道线特征信息。在模型拟合阶段,采用Canny边缘检测算法和改进的Hough变换提取出边缘特征,最后采用最小二乘法拟合车道线双曲线模型。本文在Python实验环境下对随机选取的不同复杂路况下的视频流序列进行算法验证。实验结果表明该算法平均正确率为96%以上,平均未检测