论文部分内容阅读
在高应变速率下,钛-钢复合板不同材料以不同的变形机制协调变形,结合界面起到至关重要的作用.本文分析研究了高应变速率下钛-钢复合板的界面组织特征和变形机制.结果表明:在钢侧,随着应变速率的提高,小角度(3°~10°)晶界含量增多,织构组分{112}〈241〉逐渐演变为织构{665}〈386〉和{111}〈110〉.在钛侧,随着应变速率的提高,出现了明显的形变孪晶组织,三种形变孪晶如{1121}〈1100〉拉伸孪晶、{1122}〈1123〉压缩孪晶和{1012}〈1011〉拉伸孪晶产生的难易程度不一样,变形机制由常规的“孪生变形为主”转变为“位错滑移与孪生变形共存”的复合变形模式.在结合界面处,随着应变速率的提高,需要适应由两侧产生的不同变形抗力,才能够实现连续变形而不致使材料发生破坏,其主要的协调机制依靠结合界面及附近晶粒的滑移实现变形.
Under high strain rate, different materials of titanium-steel composite plate coordinate deformation by different deformation mechanisms, and the interface plays a crucial role.In this paper, the interfacial microstructure and deformation of titanium-steel composite plate under high strain rate The results show that the grain boundaries at the small angle (3 ° ~10 °) increase with the increase of the strain rate, and the {112} <241> texture gradually evolves to the texture {665} <386 > And {111} <110>. On the titanium side, with the increase of the strain rate, obvious deformation twins appear. Three deformation twins such as {1121} <1100> stretching twins, {1122} 1123> Compression twins and {1012} <1011> tensile twins have different degrees of difficulty. The deformation mechanism changes from conventional “twin deformation” to “dislocation slip and twin deformation” "At the bonding interface, with the increase of the strain rate, it needs to adapt to the different deformation resistances generated from both sides to achieve continuous deformation without material damage, the main coordination mechanism depends on the bonding interface and Nearby grain slip deformation.