论文部分内容阅读
A series of cellulose acetate membranes were prepared by using formamide as additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree ofsubstitution, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration,Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane, while solvent-resistance, crystallinity and thermostability weresignificantly improved. This work provides a simple way to prepare the porous cellulose membranes, which not only kept thegood pore characteristics of cellulose acetate membranes, but also possessed solvent-resistance, high crystallinity andthermostability. Therefore, the application range ofcellulose acetate membranes can be expanded.
A series of cellulose acetate membranes were prepared by using formamide as an additive, and then were hydrolyzedin 4 wt% aqueous NaOH solution for 8 h to obtain regenerated cellulose membranes. The dependence of degree of fabric, structure, porous properties, solubility and thermal stability on hydrolysis time was studied by chemical titration, Fourier transform infrared spectroscopy, scanning electron microscopy, wide-angle X-ray diffraction, and differentialscanning calorimetry, respectively. The results indicated that the pore size of the regenerated cellulose membranes wasslightly smaller than that of cellulose acetate membrane This work provides a simple way to prepare the porous cellulose membranes, which not only kept the cellulose acetate membranes but also possessed solvent-resistance, high crystallinity and thermostability. Thus, the application range of cellulose acetate membranes can be expanded.