论文部分内容阅读
为实现番茄植株夜间图像分割,设计了一种基于最大类间方差法的改进脉冲耦合神经网络(PCNN)图像分割算法。该算法对传统PCNN模型中的链接输入项进行加权处理,在进行图像分割前,先基于最大类间方差(Otsu)算法获得阈值,再将该阈值赋值给改进PCNN模型中的链接输入项权值、突触链接系数β、链接权放大系数VE和阈值迭代衰减时间常数αE。对849幅番茄植株夜间图像进行试验,结果表明,图像分割正确率平均值为90. 43%,平均每幅图像分割时间为0. 994 4 s;输入链接项的加权处理可减少PCNN的迭代次数