论文部分内容阅读
基于有限时间热力学理论,结合理论和熵产理论,以输出功率最大为目标对斯特林循环进行了分析和优化,探讨了损失、耗散、熵产、熵产数及改进熵产数在系统参数优化方面的适用性.研究表明,当循环的热源为给定温度的无限热容热源时,系统的最大损失率对应于最大输出功率,最小熵产率和耗散率极值不与最大输出功率对应.当系统的热源为有限热容热源时,在给定高低温热源流体入口温度和热容量流的条件下,系统的最大损失率、最小熵产率、最小熵产数和最小改进熵产数均对应于系统最大输出功率,而耗散率极值不对应.随着高温热源流体热容量流增加,系统的输出功率、损失率、熵产率和耗散率均随之增加,而熵产数和改进熵产数先减小后增加.综合而言,在本文讨论的各种工况下,损失的概念用于斯特林循环输出功率优化时,其一致性优于本文讨论的其他参数.
Based on the theory of finite-time thermodynamics, combined with theory and theory of entropy production, the Stirling cycle was analyzed and optimized with the maximum output power. The effects of loss, dissipation, entropy production, entropy production, The research shows that the maximum loss rate of the system corresponds to the maximum output power when the heat source of the cycle is an infinite heat capacity heat source with a given temperature and the minimum entropy yield rate and the maximum dissipation rate ratio are not matched with the maximum output When the heat source of the system is a finite heat capacity heat source, the maximum loss rate, the minimum entropy rate, the minimum entropy production rate and the minimum entropy production yield are given under the condition of inlet temperature and heat capacity flow of high and low temperature heat source fluid. The number corresponding to the maximum output power of the system, while the extreme value of the dissipation rate does not correspond to the output power, loss rate, entropy yield and dissipation rate of the system increases with the increase of the heat capacity flow of high-temperature heat source fluid, In conclusion, the concept of loss for the optimized output power of the Stirling cycle is better than the other parameters discussed in this paper .