论文部分内容阅读
针对不确定机器人系统轨迹跟踪问题,并更好地消除系统不确定性对控制性能的影响.提出一种基于低通滤波器的迭代学习控制方法。采用滑模变结构控制(SMC)以提高控制器对系统干扰和摄动的鲁棒性,并在控制器输出端引入低通滤波器(LPF)来消除滑模控制中出现的抖振现象。将系统的不确定项描述为周期性和非周期性两部分,通过采用迭代学习算法对周期性不确定部分进行迭代学习,采用RBF神经网络对非周期性不确定部分的未知上界进行自适应学习。该控制方法不仅对系统的不确定性和有界外部扰动具有鲁棒性,而且使得整个系统在迭代域中是全局渐近