论文部分内容阅读
通过单因素实验研究了转速、培养温度、初始pH、脱硫时间、煤浆浓度和煤炭颗粒度对煤炭生物脱硫的影响,建立了煤炭生物脱硫反应过程的BP神经网络模型.研究结果表明,神经网络训练中的模型检验均方误差接近1x10^3,模型检验样本预测输出值和试验值的决定相关系数达到0.9997,表明该模型对煤炭生物脱硫过程仿真及结果预测效果良好;采用遗传算法工具箱对建立的BP神经网络模型进行优化求解,在最优条件下得到的脱硫率为47.6%,该结果经实验验证具有可靠稳定性.