论文部分内容阅读
针对传统BP神经网络具有易陷入局部极小等缺陷,采用遗传算法(GA)对BP神经网络(初始权值、阈值)进行了优化,将人工智能技术和激光扫描测量技术有机结合,建立了金属板材数字化渐进成形回弹预测的遗传神经网络模型,对计算结果与BP神经网络预测结果进行比较,表明遗传神经网络预测值与实测值之间具有很高的相关性和精确度,该模型可用于预测渐进成形工艺参数与回弹量之间的映射关系,为金属板材数字化渐进成形回弹量的预测开辟了一条新的途径。