论文部分内容阅读
平滑图像中的噪声是数字图像处理中非常重要的组成部分。在图像处理过程中,为了有效地实现保边缘平滑,在各向异性扩散模型和含有噪声的图像数据统计特性的基础上,提出了一个能自适应地获取参数的各向异性扩散去噪模型。该模型针对不同程度的噪声图像采用不同的参数值。实验结果表明,改进后的各向异性扩散模型的性能优于Perona-Malik模型,是一种较为理想的保边缘平滑模型。