论文部分内容阅读
近几年来,随着深度学习技术的日趋完善,传统的计算机视觉任务得到了前所未有的发展.如何将传统视觉研究中的领域知识融入到深度模型中提升深度模型的视觉表达能力,从而应对更为复杂的视觉任务,成为了学术界广泛关注的问题.鉴于此,以融合了语义知识的深度表达学习为主线展开了一系列研究.取得的主要创新成果包括3个方面:1)研究了将单类型的语义信息(类别相似性)融入到深度特征的学习中,提出了嵌入正则化语义关联的深度Hash学习方法,并将其应用于图像的相似性比对与检索问题中,取得了较大的性能提升;2)研究了将多类型信息(多重