【摘 要】
:
近年来,随着制造业的不断升级发展,对节能环保的要求越来越高,对于一些用于复杂零部件制造的钢种,为了降低在制造加工过程中的能耗,通常向钢中加入易切削元素(硫、碲、铅)来改善其切削加工性能.添加一定的硫是目前最常用的改善手段.硫在钢中主要以MnS形式存在,其形貌及分布控制水平对钢材力学性能有重要影响.对于中高硫钢,硫化锰属于塑性夹杂,在析出过程中易发生聚集长大,并且容易在轧制过程中沿拉轧方向变形,成为大尺寸长条状,这类大尺寸MnS会严重破坏材料的横向性能.为保证中高硫钢的钢材性能,需要对钢中MnS夹杂的形貌及
【机 构】
:
北京科技大学钢铁冶金新技术国家重点实验室,北京100083;湖南华菱湘潭钢铁有限公司技术质量部,湖南湘潭411101
论文部分内容阅读
近年来,随着制造业的不断升级发展,对节能环保的要求越来越高,对于一些用于复杂零部件制造的钢种,为了降低在制造加工过程中的能耗,通常向钢中加入易切削元素(硫、碲、铅)来改善其切削加工性能.添加一定的硫是目前最常用的改善手段.硫在钢中主要以MnS形式存在,其形貌及分布控制水平对钢材力学性能有重要影响.对于中高硫钢,硫化锰属于塑性夹杂,在析出过程中易发生聚集长大,并且容易在轧制过程中沿拉轧方向变形,成为大尺寸长条状,这类大尺寸MnS会严重破坏材料的横向性能.为保证中高硫钢的钢材性能,需要对钢中MnS夹杂的形貌及分布进行控制,目标是避免大尺寸MnS的产生,尽可能得到细小、均匀分布的纺锤状MnS夹杂.MnS夹杂控制是一个系统的问题,必须联系整个工艺流程进行.总结了部分合金元素、工艺参数对MnS夹杂析出的影响规律,并综述了近年来在整个生产流程中的MnS夹杂控制实践,包括精炼过程的改性处理、复合析出控制,凝固过程控制和控轧控冷控制,并指出,对于如非调质易切削钢等中高硫钢中的MnS形貌及分布控制,如何将实验室研究成果落实于工业生产是广大研究者未来共同努力的方向.
其他文献
通过反滴共沉淀法合成Co:MgAl2O4纳米粉体,通过真空烧结和HIP后处理制备了高透明的Co:MgAl2O4陶瓷.研究了碳酸铵的添加量对合成前驱体、纳米粉体和陶瓷性能的影响.结果表明:碳酸铵添加量对Co:MgAl2O4纳米粉体的分散性和陶瓷的光学性能有一定影响.pH值会影响Co:MgAl2O4纳米粉体的团聚程度,而添加0.5 L碳酸铵制备得到的纳米粉体的团聚程度最弱.同时,添加0.5 L碳酸铵制备得到的Co:MgAl2O4透明陶瓷具有最佳光学质量,在400 nm和1100 nm的直线透过率分别达到84.
以Yb2O3-Al2O3作为烧结助剂,采用烧结-热等静压工艺制备了具有高致密度和优异力学性能的Si3N4-SiCw复合材料,研究了TiO2含量对Si3N4-SiCw复合材料致密化和力学性能的影响.结果表明:TiO2的加入促进了Si3N4-SiCw复合材料的致密化.随着TiO2含量的增加,Si3N4-8%SiCw复合材料的抗弯强度、断裂韧性和Vickers硬度均呈现出先提高后降低的变化趋势.当TiO2含量(质量分数)为3%时,Si3N4-8%SiCw复合材料的相对密度和综合力学性能最佳,其相对密度、抗弯强度
高炉喷吹用燃料的燃烧性能对于高炉冶炼过程来说是非常重要的,使用燃烧性能较好的高炉喷吹燃料更有利于提高煤比、降低焦比,从而降低高炉冶炼成本.为响应节能减排政策,对一些钢铁企业采取了煤粉的限制采购和使用等措施,使得兰炭成为高炉喷吹用燃料的有效替代品.通过工业分析、元素分析和热重分析试验比较了烟煤、无烟煤和兰炭3种高炉喷吹燃料的差异,并研究了不同混合方案以及不同富氧率条件下兰炭燃烧性能的变化.研究结果表明,燃料的综合燃烧特性与其初始燃烧温度、最终燃烧温度和燃烧反应时间均有一定的相关性.3种燃料中,烟煤的综合燃烧
提高强度的同时不降低韧性,是人们在高强钢研发过程中追求的目标.相较于其他强化方式,细化晶粒可以使材料的强度和韧性同时提高,但目前为止钢铁材料晶粒尺寸最小可控制到3~5 μm,所能带来的强化效果有限.新型铁素体基高强钢通过相间析出使铁素体基体上分布着有规则排列的纳米尺寸碳化物,大大提高强韧性能、可成型性和焊接性,广泛应用于工程机械、石油管线、汽车零部件以及高层建筑领域.近几年随着钢铁行业的发展,对于相间析出的了解也越来也深入,各种微合金钢的纳米相间析出特征已有大量报道,主要集中在析出物微观结构特征与强度贡献
对烧结现场生产进行全流程取样,分析熔剂颗粒在烧结过程中的演变规律,及其对烧结过程的影响.结果 表明,在烧结混合料制粒过程中,小于0.5 mm熔剂颗粒较铁矿粉颗粒更容易黏附至核颗粒表面形成新的颗粒,从而相对均匀地分布至混合料各粒级中.大于0.5 mm粒级熔剂颗粒作为核黏附一定厚度的黏附层形成新的颗粒,黏附层厚度均小于1 mm,因此,新颗粒直径仅在原始颗粒粒径基础上增大不超过2 mm.同时由于熔剂原始颗粒粒级较细,导致制粒后大于5 mm粒级混合料中熔剂含量较少.而在烧结台车布料过程中粒级存在偏析,大颗粒向下分
QD08钢因其特殊的工作环境,要求具有较高的抗疲劳特性,而Ds类夹杂物是削弱QD08钢抗疲劳性能的主要原因.为了探究Ds类夹杂物的形成原因及调控方法,解决Ds类夹杂物超标问题,对该钢种炼钢-精炼-连铸全流程进行取样分析.分析结果表明,影响QD08钢疲劳性能的Ds类夹杂物主要成分为CaS-Al2O3-MgO-CaO,其尺寸在15~30 μm范围内波动,主要在LF精炼钙处理操作后开始出现.QD08钢中Ds类夹杂物是以钙镁铝酸盐为核心骨架,外围包裹CaS而形成的.结合夹杂物的成分分布,确定了钢中钙含量高不利于Q
精密压延不锈钢冷轧超薄板带(<0.3 mm)要求具有良好的洁净度和夹杂物塑性化以获得良好的表面质量和力学性能,但钢水的洁净化和夹杂物塑性化在冶炼上是相互矛盾的,这增加了精密压延不锈钢板带的冶炼难度.为解决不锈钢超薄带夹杂物塑性化和钢水洁净化的矛盾问题,通过热力学理论分析和实验室渣-金平衡试验研究了精密压延不锈钢冶炼的关键问题并得出相应应对策略,炉渣碱度降低,对脱氧和脱硫不利,钢水洁净度变差,高碱度渣的使用是获得较高洁净度钢水的必要条件;随着炉炉渣碱度降低,夹杂物由CaO-SiO2-Al2O3系演变为良好塑
板带材的产能和质量是一个国家工业水平发展的重要标志,铜板带材的生产能力和地位更加显著.森德威二十辊轧机是冷轧铜板带材轧制生产的关键设备,其最外层A、D支撑辊组的弯曲变形是最重要的板形调整手段之一.支撑辊组鞍座位移变化可以使支撑辊芯轴发生弯曲变形,变形会反映到背衬轴承上并且向下依次传递给中间辊和工作辊,最终影响板厚和板形.传统的假设折线法和超静定梁法将芯轴和背衬轴承考虑为一个整体,而忽略了两者之间的变形对整体支撑辊组变形的影响.因此,基于有限元方法进行仿真拟合各段背衬轴承弯曲变形得到简化后的一次函数表达式,
为提高中高碳钢产品的抗疲劳性能,利用中高碳钢的成分特点,研究开发了中高碳铝镇静钢中MnS以Al2O3为形核质点的非均质形核工艺,将钢中Al2O3脆性夹杂用塑性MnS包裹,解决了疲劳应力钢因脆性非金属夹杂引起的疲劳断裂问题.通过对微细、弥散Al2O3夹杂生成条件、MnS非均质形核析出热力学条件的研究,开展了钢中关键元素的成分设计、精炼及连铸集成工艺的设计与开发.工业实践表明,低活度氧条件下进行铝终脱氧可以形成3~5 μm微细弥散的Al2O3夹杂,并作为非均质形核的核心在二次枝晶晶间的凝固末端析出弥散、细小的
在资源约束、环保压力趋紧的形势下,新时期球团环保的重点是减少NOx的排放,其高效控制关系着球团行业的生存.以铁矿球团为对象,研究了球团料层温度对不同铁精矿球团脱硝的影响,在此基础上研究了链箅机抽风干燥段(DDD段)催化脱硝的反应行为,并通过脱硝率、氨利用率等来表征烟气成分对DDD段喷氨脱硝的影响.研究结果表明,在相同条件下,赤铁精矿的催化性能优于磁铁精矿和混合铁精矿,同时分析了链箅机各段温度分布的特点,最终选择DDD段作为SCR脱硝的反应区域.DDD段适宜的脱硝条件为,温度为300~350℃,氧气体积分数