论文部分内容阅读
为解决样本学习超分辨率算法的图像样本误匹配和边缘平滑问题,提出一种基于神经网络的非线性多类预测器学习算法,设计神经网络多类预测器,采用小生境基因表达式编程方法优化反向传播神经网络。通过学习样本集对预测器进行训练,学得学习样本中的先验知识,根据从低分辨率图像块提取的特征矢量预测图像高频信息,完成图像超分辨率复原。实验结果表明,相比样本预分类学习的几种算法,该算法的PSNR和SSIM值均有了一定提升,主观上复原结果具有更丰富的细节。