【摘 要】
:
In the present paper,we derive the asymptotic expansion formula for the trapezoidal approximation of the fractional integral.We use the expansion formula to obtain approxi-mations for the fractional integral of orders α,1+α,2+α,3+α and 4+α.The approxi-mat
【机 构】
:
Department of Mathematics and Physics,University of Forestry,1756 Sofia,Bulgaria;Institute of Mathem
论文部分内容阅读
In the present paper,we derive the asymptotic expansion formula for the trapezoidal approximation of the fractional integral.We use the expansion formula to obtain approxi-mations for the fractional integral of orders α,1+α,2+α,3+α and 4+α.The approxi-mations are applied for computation of the numerical solutions of the ordinary frac-tional relaxation and the fractional oscillation equations expressed as fractional integral equations.
其他文献
提取老子《道德经》中关于“人”素质的思想为理论基础,结合全科医生职业特点,采用理论推演的方法,构建以传统文化为背景并符合我国时代发展需要的本土化全科医生职业道德素质模型.结果显示,“奉献精神”“无私情怀”“以人为本”“从容心态”“辩证思维”“和谐境界”为全科医生职业道德素质模型构成的六大要素,这对于从根本上提高其职业道德水平具有一定的理论参考价值.
“课程思政”与“思政课程”关联密切,同向同行,对于专业教学来说,“课程思政”关联到每一门课程内容的建设及教材的使用.在充分落实教育部下发的《高等学校课程思政建设指导纲要》的基础上,注重结合《完善中华优秀传统文化教育指导纲要》和《普通高等学校本科专业类教学质量国家标准》进行古文献阅读类教材的编写,将古文献阅读知识点与“课程思政”要素相结合,发扬立德树人精神,发挥协同育人特色,提高学生综合素质.
在高校中,对参加教学团队的教师进行调查分析发现,教学团队的构成特点、团队的带头人、团队的教学教研等因素对教学绩效有正向影响.善用有效教学团队的影响因素可发挥教学资源的规模效应,对教学团队的运作机制有调节作用,有助于提高成员之间的相互学习和协同效应,从而提高教学绩效.
In this article,novel smoothness indicators are presented for calculating the nonlinear weights of the weighted essentially non-oscillatory scheme to approximate the viscosity numerical solutions of Hamilton-Jacobi equations.These novel smoothness indicat
在加快建设创新型国家、坚定文化自信、激发全民族文化创新创造力的宏阔背景下,在实现高等教育内涵式发展的教育方针的指引下,以文化产品与资源为基础,对艺术类文创成果孵化进行深入研究,研究与探索孵化的多种路径,逐步走向文化消费与输出,加快创新创业人才培养、促进文化产业发展,践行文化自觉与文化自信的时代担当.
The aim of this paper is to develop a fully discrete local discontinuous Galerkin method to solve a class of variable-order fractional diffusion problems.The scheme is discretized by a weighted-shifted Grüinwald formula in the temporal discretization and
The purpose of this paper is to study the oscillation of second-order half-linear neutral dif-ferential equations with advanced argument of the form(r(t)((y(t)+p(t)y(τ(t)))\')α)\'+q(t)yα(σ(t))=0,t≥t0,when ∫∞r-a/1(s)ds<∞.We obtain sufficient conditions
Regularization methods have been substantially applied in image restoration due to the ill-posedness of the image restoration problem.Different assumptions or priors on images are applied in the construction of image regularization methods.In recent years
在人类对气候的漫长认知过程中,因涉及学科之广、贡献人物之多、关键事件之复杂导致后人试图完整准确地把握其脉络走向的努力极为困难.这就使得梳理古今中外几千年以来气候学的发展进程变得尤为重要,也成为气候学学科建设不可或缺的重要组成部分.本文试图在前人大量研究成果基础上,回顾气候学发展历程中的重要事件和关键人物,以时间脉络为主线,勾画出人类认识气候的基本轮廓,并以此为基础探讨其对当代气候学发展的启示.
The aim of this paper is to obtain the numerical solutions of fractional Volterra integro-differential equations by the Jacobi spectral collocation method using the Jacobi-Gauss col-location points.We convert the fractional order integro-differential equa