论文部分内容阅读
我们知道线性规划能够解决许多生产、生活中的实际问题,具体有:物资调运问题、产品安排问题、下料问题.除了这些应用外,在一些求函数值域的问题中,线性规划也能发挥很大的作用. 例1求函数y=((1+2x)~(1/2))-x的值域. 不妨根据已知条件确定一个二元一次不等式组,在同一平面直角坐标系中作出该不等式组所表示的平面区域,再确定y的取值范围. 解:y=((1+2x)~(1/2))-x可变形为y+x= ((1+2x)~(1/2))(其中,1+2x≥0且y+x≥0). 两边平方得:
We know that linear programming can solve many practical problems in production and life, including: material transfer problems, product arrangement problems, and blanking problems. In addition to these applications, linear programming can also be used to solve problems in the function range. Great effect. Example 1 Find the range of the function y=((1+2x)~(1/2))-x. We can determine a set of binary inequalities based on known conditions, in the same plane rectangular coordinate system. The plane area represented by the inequality group is determined and the range of y is determined. Solution: y=((1+2x)~(1/2))-x can be transformed into y+x=((1+2x) ~(1/2)) (where 1+2x≥0 and y+x≥0). Squared on both sides: