【摘 要】
:
为帮助快销服饰企业制定合理的生产销售计划,提出结合ARIMA与RF模型的销售预测模型。通过对原始数据集进行数据预处理、特征筛选和特征降维处理,得到高质量的训练集,进而通过对参数的不断调优获得较好的实验模型,最后针对ARIMA模型无法更好地提炼非线性信息的问题,利用随机森林算法对非线性数据特征的学习能力,优化ARIMA模型预测残差,构建实验效果更好、预测精度更高的实验模型。实验结果表明,ARIMA-RF组合模型对此快销品牌销量预测结果的评价指标优于单个模型预测结果,相较于ARIMA模型,均方根误差和平均绝对
论文部分内容阅读
为帮助快销服饰企业制定合理的生产销售计划,提出结合ARIMA与RF模型的销售预测模型。通过对原始数据集进行数据预处理、特征筛选和特征降维处理,得到高质量的训练集,进而通过对参数的不断调优获得较好的实验模型,最后针对ARIMA模型无法更好地提炼非线性信息的问题,利用随机森林算法对非线性数据特征的学习能力,优化ARIMA模型预测残差,构建实验效果更好、预测精度更高的实验模型。实验结果表明,ARIMA-RF组合模型对此快销品牌销量预测结果的评价指标优于单个模型预测结果,相较于ARIMA模型,均方根误差和平均绝对
其他文献
传统深度森林模型由于局限性,在多粒度扫描特征转换阶段忽略了边缘信息,导致特征转换不充分;级联时将上一层类概率拼接到原始特征中,未考虑之前类概率向量的影响,最后投票过程忽视了子分类器权重。针对以上问题,提出一种特征重排序的深度森林(Reorder Feature Deep Forest,RFDF)算法,通过特征重排序,将较重要的特征排在中部转换出更有效的特征;级联阶段将之前层级生成的类概率向量之间的差作为增强特征与原特征拼接,进一步增强特征差异性,缓解网络退化现象。引入逻辑回归分类器,增加子分类器的差异性。
为测算线路除冰电脉冲系统中不易直接测量的除冰脉冲力,将其转化为测算与之关联的线圈峰值电流,并验证电脉冲除冰方案的可行性。基于MATLAB软件对电脉冲系统中线圈的峰值电流进行流程建模、程序设计与仿真计算,并将所得结果与峰值电流的理论计算结果进行比较验证。结果表明,仿真计算得出的峰值电流值与理论计算值基本一致,随机误差不超过10%。通过对电脉冲系统的线圈峰值电流进行仿真计算可得出,随着脉冲放电电压的增大,与峰值电流对应的除冰脉冲力也会不断增大,可为之后在人工状态下进行输电线路电脉冲实验提供参考依据。
对数据量大的评价文本内容进行分类分析较困难,为解决这一难题,提出面向XGBoost的评价文本智能分类模型,在样本不均衡问题下采用随机欠采样方法进行处理,对文本内容使用jieba分词和停用词进行词向量表示,使用PCA(主成分分析)进行特征降维,使用交叉验证方法寻找XGBoost最优参数。为验证模型的有效性,分别在1647条数据以及9994条数据上进行实验。实验结果表明,XGBoost模型在评价文本分类时精准率、召回率、F1值分别达到了87.62%、87.73%、87.67%。面向XGBoost的评价文本智能
针对基于高阶累积量的线性约束最小方差(LCMV)自适应波束形成技术存在计算量大、实际应用中适用性不好的问题,提出基于波束空间的四阶累积量LCMV波束形成算法。将优化扩展后的原位替换求逆算法引入自适应阵列处理中,将阵列接收信号从阵元域变换到波束域,在波束域中构造四阶累积量相关矩阵。引入约化系数矩阵,在原位替换算法的基础上,通过主元交换与对角线修正完成求逆运算,求解最优权矢量。仿真结果与计算量分析表明,与传统LCMV算法相比,该算法波束主瓣更窄,旁瓣更低,抗干扰性能更好;与阵元域四阶累积量的LCMV相比,计算
为了解决传统中小型应用网站作为单体应用,功能模块之间耦合度高、网页响应速度慢、后期维护升级复杂的问题,采用SpringCloud微服务架构设计思想,结合Springboot后端框架和Vue前端框架,并补充非关系型数据库Redis以增强传统关系型数据库,重构了传统在线律师网站。软件测试结果表明,重构后的网站各功能模块之间耦合度低,可独立部署和运行。系统的稳定性和响应速度有大幅提升,在高负载情况下,平均响应时间不超过5ms。基于微服务的在线律师网站引入微服务中组件化和服务化设计思想,有效拆分了单体应用,降低了
系统建模的主要目的是了解和研究系统运行特点及其动态特征。制粉系统中磨煤机的惯性与延迟是造成锅炉难以控制的主要因素,因此建立能够直观反映制粉系统强耦合、非线性特征的控制系统具有重要意义。使用多领域复杂物理系统的建模语言Modelica,在开发环境OpenModelica下,充分利用软件面向对象功能,以及参数化、模块化、图形化特点,建立一个开放的可扩展制粉系统模型。仿真结果表明,Modelica/OpenModelica仿真软件是一种针对物理建模的有效工具,能够很好地反映制粉系统实际状况。
应用模拟电荷法计算有界多连通区域数值保角变换时,求解电荷量与变换半径的线性方程组为病态方程组,且随着模拟电荷点的增加,线性方程组系数矩阵的条件数也随之变大,导致求解结果精度下降及不稳定等问题。因此,提出采用GPBi-CG迭代算法,基于1-范数均衡法降低系数矩阵的条件数,建立基于1-范数均衡预处理GPBi-CG算法的数值保角变换新算法,并通过几个数值实验验证了该方法的有效性。相比于传统的Amano法与Gauss-Seidle法,随着模拟电荷点的增加,该方法误差远低于传统方法。当各边界上的模拟电荷点数N=12
应力强度因子是疲劳裂纹扩展的表征参量。为了探究材料断裂失效时微孔洞对于材料内部裂纹扩展的影响,基于有限元软件ABAQUS对6061铝合金材料构建力学性能模型。分别从孔洞到裂纹尖端的距离、角度和孔洞的大小3个方面研究应力强度因子的影响变化,并通过MATLAB进行不同参数的合并拟合确认其数学关系式,从理论上验证软件仿真拟合的合理性。仿真结果表明,孔洞往往会降低裂纹尖端的应力强度因子,且随着孔洞裂纹相对位置增加,其影响会呈幂函数分布减小,并且这一影响在45°左右时最为明显。研究表明,孔洞影响裂纹尖端的应力强度因
为提高旋转机械故障诊断中故障分类的准确率,以及针对故障数据特征不充足而带来的泛化能力较差问题,提出一种多特征融合卷积神经网络(CNN)的旋转机械故障诊断方法。首先利用连续小波变换将一维原始信号转换成二维小波时频图,构建多特征融合CNN网络模型。其中,原始振动信号为1DCNN模型输入,小波时频图为2DCNN模型输入;然后根据上面两个维度的输入进行网络模型训练;最后将测试集中的数据输入到已经训练好的网络模型,对不同旋转机械故障进行分类。在凯斯西储大学的轴承数据集、机械故障预防技术(MFPT)的轴承数据集上进行
为对平衡功能障碍患者进行评估和康复训练,设计开发了一套平衡功能障碍智能训练系统。阐述了系统总体设计框架、硬件关键模块设计、平衡功能评估模块设计、患者档案设计、三维游戏设计以及智能算法实现。该系统具备丰富的三维游戏场景,能够对患者进行平衡功能训练,自动调整游戏参数,显示患者训练结果。设立对照组和实验组进行实验,结果表明,使用平衡功能训练仪的患者Berg平衡量表平均分数高于不使用该系统进行训练的患者,说明平衡功能障碍智能康复训练系统可以提高患者的平衡功能。