论文部分内容阅读
目的 :探讨自动分解肌电图对神经肌肉疾病的诊断价值。方法 :采用 Nicolet和 Viking IV型肌电图仪 ,以常规同心圆针电极记录 ,对 71例健康成人和 4 3例神经肌肉疾病患者的肱二头肌或 /和胫前肌进行检测 ,测定运动单位动作电位 ( MUAP)的 5个参数 :波幅、时限、转折数、发放率、棘波间隔变异系数 ( CTV)。结果 :对照组ADEMG的 MUAP各种参数受年龄、肌肉、收缩力量的影响。 ADEMG测定的 MUAP时限和波幅均较传统 EMG的要小。1 5例肌源性疾病患者和 2 8例神经源性疾病患者的各参数有诊断意义。结论 :ADEMG能自动、快速获取并分析大量高、低阈值的 MUAP,即可分析 MUAP形态特征 ,还可发析 MUAP的发放形式 ,因此可作为一种临床筛选检测手段。
Objective: To investigate the diagnostic value of automatic decomposition of electromyography on neuromuscular diseases. Methods: Nicolet and Viking IV electromyographs were used to detect biceps brachii and / or tibialis anterior muscle of 71 healthy adults and 43 neuromuscular diseases with conventional concentric needle electrodes. Unit Action Potential (MUAP) of the five parameters: amplitude, time limit, the number of turns, release rate, spike wave coefficient of variation (CTV). Results: The MUAP parameters of ADEMG in control group were affected by age, muscle and contractile force. MUEM time and amplitude of MUAP measured by ADEMG are smaller than the traditional EMG. All 15 patients with myogenic disease and 28 patients with neurogenic disease have diagnostic significance. CONCLUSIONS: ADEMG can automatically and quickly acquire and analyze a large number of MUAPs with high and low thresholds to analyze morphological features of MUAPs and to disseminate the distribution pattern of MUAPs. Thus, it can be used as a clinical screening test.