论文部分内容阅读
本文基于新常态经济发展背景研究了居民消费价格指数(CPI)的预测模型,采用传统的方法和机器学习方法进行预测和对比分析,包括普通最小二乘回归、LASSO回归、岭回归、时间序列预测方法、神经网络、随机森林和支持向量回归.结果表明,神经网络的预测结果明显优于传统的回归方法和时间序列预测方法,而且也同样优于支持向量回归方法和随机森林方法.此外,在引入集成学习方法进行综合后,各模型的预测精度进一步提升.