Predictive Characteristics of Co-authorship Networks: Comparing the Unweighted, Weighted, and Bipart

来源 :Journal of Data and Information Science | 被引量 : 0次 | 上传用户:tananhua251
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Purpose: This study aims to answer the question to what extent different types of networks can be used to predict future co-authorship among authors.Design/methodology/approach: We compare three types of networks: unweighted networks, in which a link represents a past collaboration; weighted networks, in which links are weighted by the number of joint publications; and bipartite author-publication networks. The analysis investigates their relation to positive stability, as well as their potential in predicting links in future versions of the co-authorship network. Several hypotheses are tested.Findings: Among other results, we find that weighted networks do not automatically lead to better predictions. Bipartite networks, however, outperform unweighted networks in almost all cases.Research limitations: Only two relatively small case studies are considered.Practical implications: The study suggests that future link prediction studies on co-occurrence networks should consider using the bipartite network as a training network.Originality/value: This is the first systematic comparison of unweighted, weighted, and bipartite training networks in link prediction. Purpose: This study aims to answer the question to what extent different types of networks can be used to predict future co-authorship among authors.Design/methodology/approach: We compare three types of networks: unweighted networks, where a link represents a past collaboration; weighted networks, in which links are weighted by the number of joint publications; and bipartite author-publication networks. The analysis investigates their relation to positive stability, as well as their potential in predicting links in future versions of the co-authorship Several hypotheses were tested. Findings: Among other results, we find that weighted networks do not automatically lead to better predictions. Bipartite networks, however, outperform unweighted networks in almost all cases. Research limitations: Only two relatively small case studies are considered .ractical implications: The study suggests that future link prediction studies on co-occurrence networks should consider using the b ipartite network as a training network. Originality / value: This is the first systematic comparison of unweighted, weighted, and bipartite training networks in link prediction.
其他文献
《中国文学研究现代化进程》,王瑶主编。508千字。北京大学出版社1996年12月出版。责任编辑:张凤珠 王瑶先生主编的这部书,评论了17位古典文学研究先贤的学术成就和治学风范。主编和作者群体所共同关注的核心问题,应该就是书名所标示的“现代化进程”。“中国文学研究历程”和“中国文学研究现代化进程”,显然是两种路数。而为了理清“现代化进程”这一研究路数的来龙去脉,
《徐悲鸿经典绘画作品展》2006年香港佳士得拍卖会上,徐悲鸿的《奴隶与狮》以5388万港币创下中国油画拍卖价的世界纪录。2007年初夏,包括《愚公移山》和《田横五百士》两幅国
有些事真是不可思议:两口子在工作岗位上干了三四十年,工作再累,生活再苦,夫妻间很少磕磕绊绊,更多的是呢喃爱语、互相鼓励、互相关爱,甜甜蜜蜜地过着并不宽裕的日子。13年前
国外寻金热Gold日期:即日至2007年8月19日地址:American Museum of Natural History,Central Park West,79th Street,New York City,New York,USA这次位于纽约的美国自然历史
目的通过裸鼠移植瘤试验,观察NSAIDs药物对胃癌移植瘤的抑制作用;通过NSAIDs对COX-2、VEGF及NF-κB表达影响的研究,证实抑制胃癌新生血管形成在NSAIDs抗胃癌发生发展中的重要
“前辈,您能不能等会再下班呢?”J小姐在下班时有点犹豫地询问金代理。“哦……今天呀,我已经和别人定下约会了啊,有什么事吗?”“那个,我的工作还剩了一点,不过也不是麻烦您
号称礼乐之邦的古代中国,并无系统的音乐史著作,严格说,中国的音乐研究自五四运动以后才开始的,音乐考古学的起步就更晚了。唐兰的《古乐器小记》与刘半农所做的古乐器测音研究可
本月主打水瓶座1.20~2.18水瓶座最大的特点就是革新,个猫主义在水瓶座猫猫身上也非常明显。它们喜欢追求独一无二的生活方式。水瓶座猫猫对人对猫都非常友善,非常适合在人多猫
那天,王志问姚明的最后一个问题是:“未来,国内会有人超过你吗?”以老江湖的眼光看,这个问题显然狡猾。面对它,无论姚回答有,还是没有,都有被绕进去的危险。说到底,在篮球之外,还牵扯到社会经验、公共关系、媒体策略等,姚明毕竟是初生牛犊。  那天,在第五十七届戛纳电影节颁奖仪式上,纪录片《华氏911》的导演迈克尔摩尔先生荣获金棕榈大奖。他有点激动地说:“全世界都能看到这部电影了,除了一个国家。抱歉的是,