论文部分内容阅读
为了去除在脑电信号采集过程中受到的干扰,在传统方法的基础之上,提出了一种基于卷积神经网络(CNN)脑电信号伪迹检测与去除的方法。该方法通过CNN模型对脑电信号电压幅值计算后的特征进行提取,完成Softmax分类器对脑电信号的检测分类。采用EEMD算法将含噪脑电信号分解为若干个本征模式函数IMF分量,通过Hilbert特征法提取出噪声占主导的高频IMF分量,再由FastICA的方法将剩余信号分离,达到眼电伪迹的去除。实验表明,CNN方法检测准确率高达80%以上,CNN与EEMD的结合提高了脑电信号伪迹去除的