论文部分内容阅读
根据振动理论,对于弹性悬挂的运输车辆,若只考虑车体在纵向竖直平面内的自由度,则簧上车体部分的位置可完全由其重心竖直位移Z和转角θ所确定(见图),并不难写出其振动微分方程: 式中:m——车辆在弹簧上部分的质量; I——惯性半径,I=(J/M)~(1/2); J——簧上部分相对于重心的转动惯量; k_1,k_2——弹簧的刚度。 以上方程的解应具有如下的形式:
According to the vibration theory, the position of the sprung mass part can be completely determined by the vertical center of gravity (Z) and the rotation angle (θ) if only the degree of freedom of the vehicle body in the longitudinal vertical plane is taken into account for the elastic suspension transport vehicle Figure), it is not difficult to write out its differential equation of vibration: Where: m - the mass of the vehicle on the spring; I - radius of inertia, I = (J / M) ~ (1/2); J - The moment of inertia of the sprung part relative to the center of gravity; k_1, k_2 - The stiffness of the spring. The solution to the above equation should have the following form: