论文部分内容阅读
Structural features of the typical continental paleorift in Panxi area are revealed by seismic tomography. (1) In the profile along the minor axis of Panxi paleorift, we found alternating high and low-velocity strips existing at different depths in the crust, presenting itself as a “sandwich” structure. The existence of these high and low-velocity anomaly strips is related to the basal lithology in the rift area. (2) An addition layer with velocity values of 7.1-7.5 km/s and 7.8 km/s exists from the base of lower crust to uppermost mantle and its thickness is about 20 km. Some study results indicate that the addition layer results from the invasion of mantle material. (3) A lens-shaped high-velocity body surrounded by relatively low-velocity material is observed at depths of 110-160 km between Huaping and Huidong in the axis of the paleorift. This is the first time to discover it in the upper mantle of the paleorift. Based on the results of geology, petrology and geochemistry, we infer that the formation
Structural features of the typical continental paleorift in Panxi area are revealed by seismic tomography. (1) In the profile along the minor axis of Panxi paleorift, we found alternating high and low-velocity strips existing at different depths in the crust, The existence of these high and low-velocity anomaly strips is related to the basal lithology in the rift area. (2) An addition layer with velocity values of 7.1-7.5 km / s and 7.8 km / s exists from the base of lower crust to uppermost mantle and its thickness is about 20 km. Some study results indicate that the addition layer results from the invasion of mantle material. (3) A lens-shaped high-velocity body surrounded by relatively low -velocity material is observed at depths of 110-160 km between Huaping and Huidong in the axis of the paleorift. This is the first time to discover it in the upper mantle of the paleorift. Based on the results of geology, petrology and geochemistry, we inf er that the formation