论文部分内容阅读
报道在聚乙烯吡咯烷酮(PVP)的协助作用下,通过简单调节OH–离子的浓度及Cu2+的释放速度,将Cu2O调节为具有不同空腔特征(介孔、空心及实心)结构的纳米球.研究表明,OH–根离子的扩散动力学是决定产物结构的关键因素.当[OH–]>0.05 mol L–1时,高的化学势使其迅速扩散到PVP胶团内部,与吸附在PVP链上的Cu2+反应形成Cu(OH)2,在抗坏血酸(Vc)的还原作用下经过重结晶得到Cu2O实心球纳米结构;当[OH–]<0.025 mol L–1时,其扩散速度下降,首先与吸附在PVP胶团外部的Cu2+反应形成Cu(OH)2,Cu(OH)2的形成阻碍了OH–离子的向内扩散,形成具有较大空腔(~220 nm)的空心球;当0.025 mol L–1<[OH–]<0.05 mol L–1时,形成较小空腔(30–60 nm)的空心球.以NH3水为OH–缓释源时,虽然OH–浓度较低,但同时Cu2+的浓度也低,胶团外部形成的Cu(OH)2不足以阻碍OH–离子的向内扩散,反应过程中NH3的释放及较低的OH–浓度阻碍了重结晶的发生,从而形成Cu2O介孔纳米球.对三种典型结构特征的产物进行了NO2气体传感性质研究,结果表明,Cu2O介孔纳米球相比空心结构和实心结构具有更为优异的响应性.结合比表面积数据,我们认为介孔纳米球疏散的结构有利于NO2气体的扩散和O2的吸附,从而表现出了更灵敏的气体传感性.
Reported that with the aid of polyvinylpyrrolidone (PVP), Cu2O was modified into nanospheres with different cavity characteristics (mesoporous, hollow and solid) by simply adjusting the concentration of OH- ions and the release rate of Cu 2+. The results show that the diffusion kinetics of OH-ions is the key factor to determine the structure of the product.When [OH -]> 0.05 mol L-1, the high chemical potential rapidly diffuses into the PVP micelles, Cu (OH) 2 on Cu2 + was recrystallized by reduction of ascorbic acid (Vc) to obtain Cu2O solid spherical nanostructures. When [OH -] was less than 0.025 mol L-1, the diffusion rate of Cu2 + The formation of Cu (OH) 2 by the reaction of Cu2 + adsorbed on the outside of the PVP micelles hindered the inward diffusion of OH- and formed a hollow sphere with a large cavity (~ 220 nm). When 0.025 mol Hollow spheres with smaller cavities (30-60 nm) were formed when L-1 <[OH -] <0.05 mol L-1. While NH3 water was the source of OH- release, although the OH- concentration was lower, At the same time, the concentration of Cu2 + is also low. The formation of Cu (OH) 2 outside the micelles is not enough to hinder the inward diffusion of OH- ions. The NH3 release during the reaction and the low OH- concentration resistance The recrystallization takes place to form Cu2O mesoporous nanospheres.The study of NO2 gas sensing properties of the three typical structural products shows that the Cu2O mesoporous nanospheres are superior to the hollow structure and the solid structure In the light of the specific surface area data, we believe that the evacuation of mesoporous nanospheres favors the diffusion of NO 2 gas and the adsorption of O 2, thus exhibiting more sensitive gas sensing.