论文部分内容阅读
工程師們在進行地基設計時,如果遇到偏心儎作用的話,則压力將假定为一三角形或一梯形分佈地作用在半無限的彈性体上。本文提出了当三角形分佈儎作用於矩形面積上時求地基內垂直应力的方法。对地基設計者而言,它將是一个很实用的方法。另一个为我們所熟知的“角點法”是適用於均佈儎作用於一矩形面積上者,本法即与它相像,而能用以求得矩形基礎的指定的角點下任一深度Z处的垂直应力σ_z,且亦能以極其簡單之形式表示如下:σ_z=k_1q,其中L及b各表示矩形面積的边長(見圖1)。当我們知道L/b及Z/b之此值後,相应的k_1值即可很快地从本文中的表中查得。根据叠加原理,当一梯形儎作用於一矩形面積上時。地基內的垂直应力亦可用本法求之;因为由於梯形儎而在任意點所產生的σ_z是等於由於一个三角形分佈儎及一个均佈儎所產生的应力的代數和。很顯然地,如果將本法加以推廣的話,可以用它來求矩形面積上任一點下任意深度Z处的垂直应力,不論三角形分佈儎及梯形分佈儎均可適用
Engineers in the design of the foundation, if they encounter the eccentric deterrence effect, the pressure will assume a triangular or a trapezoidal distribution acting on the semi-infinite elastic body. This paper presents a method to find the vertical stress in the foundation when the triangular distribution 儎 acts on the area of the rectangle. For ground-based designers, it will be a very practical method. Another “corner point method” known to us is that it applies to a uniform distribution of a rectangular area, and this method is similar to it, and can be used to obtain the depth of any rectangle at a specified corner. The vertical stress σ_z at Z, and can also be expressed in an extremely simple form as follows: σ_z=k_1q, where L and b each represent the side length of a rectangular area (see FIG. 1 ). When we know this value of L/b and Z/b, the corresponding k_1 value can be quickly found from the table in this article. According to the principle of superposition, when a trapezoid is acting on a rectangular area. The vertical stress in the foundation can also be obtained by this method; since the σ_z generated at any point due to the trapezoidal ridge is equal to the algebraic sum of the stress due to a triangular distribution and a uniformly distributed enthalpy. Obviously, if this law is generalized, it can be used to find the vertical stress at any depth Z at any point on the rectangular area, which can be applied to both triangular and trapezoidal distributions.